×

Statistical inference for nonergodic weighted fractional Vasicek models. (English) Zbl 1489.60059

Summary: A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as \(d{X_t}=\theta (\mu +{X_t})dt+d{B_t^{a,b}}, t\ge 0\), with unknown parameters \(\theta >0\), \(\mu \in \mathbb{R}\) and \(\alpha :=\theta \mu\), whereas \({B^{a,b}}:=\{{B_t^{a,b}},t\ge 0\}\) is a weighted fractional Brownian motion with parameters \(a>-1, |b|<1, |b|<a+1\). Least square-type estimators \((\widetilde{\theta}_T, \widetilde{\mu}_T)\) and \((\widetilde{\theta}_T,\widetilde{\alpha}_T)\) are provided, respectively, for \((\theta, \mu)\) and \((\theta ,\alpha)\) based on a continuous-time observation of \(\{{X_t},\hspace{2.5pt}t\in [0,T]\}\) as \(T\to \infty\). The strong consistency and the joint asymptotic distribution of \((\widetilde{\theta}_T, \widetilde{\mu}_T)\) and \((\widetilde{\theta}_T, \widetilde{\alpha}_T)\) are studied. Moreover, it is obtained that the limit distribution of \(\widetilde{\theta}_T\) is a Cauchy-type distribution, and \(\widetilde{\mu}_T\) and \(\widetilde{\alpha}_T\) are asymptotically normal.

MSC:

60G22 Fractional processes, including fractional Brownian motion
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
62M09 Non-Markovian processes: estimation
Full Text: DOI

References:

[1] Alsenafi, A., Al-Foraih, M., Es-Sebaiy, K.: Least squares estimation for non-ergodic weighted fractional Ornstein-Uhlenbeck process of general parameters (2020). Preprint. arXiv:
[2] Basawa, I.V., Scott, D.J.: Asymptotic Optimal Inference for Non-Ergodic Models. , vol. 17. Springer, New York (1983). MR0688650 · Zbl 0519.62039
[3] Bajja, S., Es-Sebaiy, K., Viitasaari, L.: Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean. J. Korean Stat. Soc.46(4), 608-622 (2017). MR3718150. · Zbl 1377.62085
[4] Belfadli, Es-Sebaiy K, R., Ouknine, Y.: Parameter estimation for fractional Ornstein-Uhlenbeck processes: non-ergodic case. Front. Sci. Eng.1(1), 1-16 (2011)
[5] Bojdecki, T., Gorostiza, L., Talarczyk, A.: Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Electron. Commun. Probab.12, 161-172 (2007). MR2318163. · Zbl 1128.60025
[6] Chronopoulou, A., Viens, F.: Estimation and pricing under long-memory stochastic volatility. Ann. Finance8, 379-403 (2012). MR2922802. · Zbl 1298.91160
[7] Chronopoulou, A., Viens, F.: Stochastic volatility and option pricing with long-memory in discrete and continuous time. Quant. Finance12, 635-649 (2012). MR2909603. · Zbl 1278.91112
[8] Dehling, H., Franke, B., Woerner, J.H.C.: Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat. Inference Stoch. Process.1-14 (2016). MR3619570. · Zbl 1369.62214
[9] Dietz, H.M., Kutoyants, Y.A.: Parameter estimation for some non-recurrent solutions of SDE. Stat. Decis.21, 29-46 (2003). MR1985650. · Zbl 1046.62081
[10] El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc.45, 329-341 (2016). MR3527650. · Zbl 1342.62024
[11] El Onsy, B., Es-Sebaiy, K., Viens, F.: Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics89(2), 431-468 (2017). MR3590429. · Zbl 1422.62275
[12] Es-Sebaiy, K., Alazemi, F., Al-Foraih, M.: Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes. Acta Math. Sci.39(4), 989-1002 (2019). MR4066516. · Zbl 1489.60059
[13] Es-Sebaiy, K., Nourdin, I.: Parameter estimation for α-fractional bridges. Springer Proc. Math. Stat.34, 385-412 (2013). MR3070453. · Zbl 1268.62099
[14] Es-Sebaiy, K., Sebaiy M, Es.: Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. Statistical Methods & Applications1-28 (2020). · Zbl 1462.60042
[15] Hu, Y., Nualart, D., Zhou, H.: Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat. Inference Stoch. Process.1-32 (2017). MR3918739. · Zbl 1419.62211
[16] Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance18(6), 933-949 (2018). MR3805308. · Zbl 1400.91590
[17] Jacod, J.: Parametric inference for discretely observed non-ergodic diffusions. Bernoulli12, 383-401 (2006). MR2232724. · Zbl 1100.62081
[18] Kleptsyna, M.L., Le Breton, A.: Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inference Stoch. Process.5(3), 229-248 (2002). MR1943832. · Zbl 1021.62061
[19] Marsaglia, G.: Ratios of normal variables and ratios of sums of uniform variables. J. Am. Stat. Assoc.60, 193-204 (1965). MR0178490. · Zbl 0126.35302
[20] Nourdin, I.: Selected Aspects of Fractional Brownian Motion. , vol. 4. Springer/Bocconi University Press, Milan (2012). MR3076266. · Zbl 1274.60006
[21] Nualart, D.: The Malliavin calculus and related topics (Vol. 1995). Springer, Berlin (2006). MR1344217. · Zbl 0837.60050
[22] Pham-Gia, T., Turkkan, N., Marchand, E.: Density of the ratio of two normal random variables and applications. Commun. Stat., Theory Methods35(9), 1569-1591 (2006). MR2328495. · Zbl 1105.62018
[23] Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ.5(2), 177-188 (1977). · Zbl 1372.91113
[24] Shimizu, Y.: Notes on drift estimation for certain non-recurrent diffusion from sampled data. Stat. Probab. Lett.79, 2200-2207 (2009). MR2572052. · Zbl 1171.62341
[25] Young, L.C.: An inequality of the Hölder type connected with Stieltjes integration. Acta Math.67, 251-282 (1936). MR1555421. · JFM 62.0250.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.