×

Volatility is rough. (English) Zbl 1400.91590

Summary: Estimating volatility from recent high frequency data, we revisit the question of the smoothness of the volatility process. Our main result is that log-volatility behaves essentially as a fractional Brownian motion with Hurst exponent \(H\) of order 0.1, at any reasonable timescale. This leads us to adopt the fractional stochastic volatility (FSV) model of F. Comte and E. Renault [Math. Finance 8, No. 4, 291–323 (1998; Zbl 1020.91021)]. We call our model rough FSV (RFSV) to underline that, in contrast to FSV, \(H<1/2\). We demonstrate that our RFSV model is remarkably consistent with financial time series data; one application is that it enables us to obtain improved forecasts of realized volatility. Furthermore, we find that although volatility is not a long memory process in the RFSV model, classical statistical procedures aiming at detecting volatility persistence tend to conclude the presence of long memory in data generated from it. This sheds light on why long memory of volatility has been widely accepted as a stylized fact.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60G22 Fractional processes, including fractional Brownian motion
60J60 Diffusion processes

Citations:

Zbl 1020.91021

Software:

longmemo; YUIMA

References:

[1] Andersen, T.G. and Bollerslev, T., Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns. J. Finance, 1997, 52(3), 975-1005.
[2] Andersen, T.G. and Bollerslev, T., Intraday periodicity and volatility persistence in financial markets. J. Emp. Finance, 1997, 4(2), 115-158.
[3] Andersen, T.G., Bollerslev, T., Diebold, F.X. and Ebens, H., The distribution of realized stock return volatility. J. Financ. Econ., 2001a, 61(1), 43-76.
[4] Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P., The distribution of realized exchange rate volatility. J. Amer. Stat. Assoc., 2001b, 96(453), 42-55. · Zbl 1015.62107
[5] Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P., Modeling and forecasting realized volatility. Econometrica, 2003, 71(2), 579-625. · Zbl 1142.91712
[6] Bacry, E. and Muzy, J.F., Log-infinitely divisible multifractal processes. Commun. Math. Phys., 2003, 236(3), 449-475. · Zbl 1032.60046
[7] Bayer, C., Friz, P. and Gatheral, J., Pricing under rough volatility. Quant. Finance, 2016, 16(6), 887-904. · Zbl 1465.91108
[8] Bennedsen, M., Lunde, A. and Pakkanen, M.S., Decoupling the short-and long-term behavior of stochastic volatility. Available at SSRN 2846756, 2016.
[9] Bentes, S.R. and Cruz, M.M.d., Is stock market volatility persistent? A fractionally integrated approach. Instituto Superior de Contabilidade e Administração de Lisboa, Comunicações, 2011.
[10] Beran, J., Statistics for Long-memory Processes. Vol. 61, 1994 (CRC Press: Boca Raton, FL). · Zbl 0869.60045
[11] Bibby, B.M., Skovgaard, I.M., Sørensen, M., et al., Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli, 2005, 11(2), 191-220. · Zbl 1066.60071
[12] Bouchaud, J.P. and Potters, M., Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, 2003 (Cambridge University Press: Cambridge). · Zbl 1194.91008
[13] Brouste, A. and Iacus, S.M., Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package. Comput. Stat., 2013, 28(4), 1529-1547. · Zbl 1306.65034
[14] Carr, P. and Wu, L., What type of process underlies options?A simple robust test. J. Finance, 2003, 58(6), 2581-2610.
[15] Chen, Z., Daigler, R.T. and Parhizgari, A.M., Persistence of volatility in futures markets. J. Futures Markets, 2006, 26(6), 571-594.
[16] Cheridito, P., Kawaguchi, H. and Maejima, M., Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab, 2003, 8(3), 1-14. · Zbl 1065.60033
[17] Chronopoulou, A., Parameter estimation and calibration for long-memory stochastic volatility models. In Handbook of Modeling High-frequency Data in Finance, edited by F.G. Viens, M.C. Mariani and I. Florescu, pp. 219-231, 2011 (John Wiley & Sons: Hoboken, NJ).
[18] Chronopoulou, A. and Viens, F.G., Estimation and pricing under long-memory stochastic volatility. Ann. Finance, 2012, 8(2-3), 379-403. · Zbl 1298.91160
[19] Coeurjolly, J.-F., Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process., 2001, 4(2), 199-227. · Zbl 0984.62058
[20] Comte, F., Coutin, L. and Renault, É., Affine fractional stochastic volatility models. Ann. Finance, 2012, 8(2-3), 337-378. · Zbl 1298.60067
[21] Comte, F. and Renault, E., Long memory in continuous-time stochastic volatility models. Math. Finance, 1998, 8(4), 291-323. · Zbl 1020.91021
[22] Cont, R., Volatility clustering in financial markets: Empirical facts and agent-based models. In Long Memory in Economics, edited by G. Teyssière and A.P. Kirman, pp. 289-309, 2007 (Springer: Berlin Heidelberg). · Zbl 1181.91341
[23] Corsi, F., A simple approximate long-memory model of realized volatility. J. Financ. Econom., 2009, 7(2), 174-196.
[24] Dayri, K. and Rosenbaum, M., Large tick assets: Implicit spread and optimal tick size. Microstruct. Liquidity, 2015, 1(1), 155003.
[25] Diebold, F.X. and Inoue, A., Long memory and regime switching. J. Econom., 2001, 105(1), 131-159. · Zbl 1040.62109
[26] Ding, Z., Granger, C.W. and Engle, R.F., A long memory property of stock market returns and a new model. J. Emp. Finance, 1993, 1(1), 83-106.
[27] Duchon, J., Robert, R. and Vargas, V., Forecasting volatility with the multifractal random walk model. Math. Finance, 2012, 22(1), 83-108. · Zbl 1279.60051
[28] Dupire, B., Pricing with a smile. Risk Mag., 1994, 7(1), 18-20.
[29] El Euch, O., Fukasawa, M. and Rosenbaum, M., The microstructural foundations of leverage effect and rough volatility, preprint arXiv:1609.05177, 2016. · Zbl 1410.91491
[30] El Euch, O. and Rosenbaum, M., The characteristic function of rough heston models, arXiv preprint arXiv:1609.02108, 2016.
[31] El Euch, O. and Rosenbaum, M., Perfect hedging in rough heston models, arXiv preprint arXiv:1703.05049, 2017.
[32] Fukasawa, M., Asymptotic analysis for stochastic volatility: Martingale expansion. Finance Stoch., 2011, 15(4), 635-654. · Zbl 1303.91177
[33] Gatheral, J., The Volatility Surface: A Practitioner’s Guide. Vol. 357, 2006 (John Wiley & Sons: Hoboken, NJ).
[34] Gatheral, J. and Jacquier, A., Arbitrage-free SVI volatility surfaces. Quant. Finance, 2014, 14(1), 59-71. · Zbl 1308.91187
[35] Gatheral, J. and Oomen, R.C., Zero-intelligence realized variance estimation. Finance Stoch., 2010, 14(2), 249-283. · Zbl 1222.62128
[36] Geweke, J. and Porter-Hudak, S., The estimation and application of long memory time series models. J. Time Ser. Anal., 1983, 4(4), 221-238. · Zbl 0534.62062
[37] Granger, C.W. and Hyung, N., Occasional structural breaks and long memory with an application to the s &p 500 absolute stock returns. J. Emp. Finance, 2004, 11(3), 399-421.
[38] Granger, C.W. and Teräsvirta, T., A simple nonlinear time series model with misleading linear properties. Econ. Lett., 1999, 62(2), 161-165. · Zbl 0918.90044
[39] Hagan, P.S., Kumar, D., Lesniewski, A.S. and Woodward, D.E.Managing smile risk. Wilmott Mag., 2002, 84-108.
[40] Heston, S.L., A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud., 1993, 6(2), 327-343. · Zbl 1384.35131
[41] Hull, J. and White, A., One-factor interest-rate models and the valuation of interest-rate derivative securities. J. Financ. Quant. Anal., 1993, 28(02), 235-254.
[42] Istas, J. and Lang, G., Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. l’IHP Probab. Stat., 1997, 33(4), 407-436. · Zbl 0882.60032
[43] Mandelbrot, B.B. and Van Ness, J.W., Fractional Brownian motions, fractional noises and applications. SIAM Rev., 1968, 10(4), 422-437. · Zbl 0179.47801
[44] Mantegna, R.N. and Stanley, H.E., Introduction to Econophysics: Correlations and Complexity in Finance, 2000 (Cambridge University Press: Cambridge). · Zbl 1138.91300
[45] Mikosch, T. and Stărică, C., Is it really long memory we see in financial returns. In Extremes and Integrated Risk Management, edited by P. Embrechts, pp. 149-168, 2000 (Risk Books: London).
[46] Musiela, M. and Rutkowski, M., Martingale Methods in Financial Modelling. Vol. 36, 2006 (Springer: Heidelberg, Germany). · Zbl 0906.60001
[47] Novikov, A. and Valkeila, E., On some maximal inequalities for fractional Brownian motions. Stat. Probab. Lett., 1999, 44(1), 47-54. · Zbl 0947.60033
[48] Nuzman, C.J. and Poor, V.H., Linear estimation of self-similar processes via Lamperti’s transformation. J. Appl. Probab., 2000, 37(2), 429-452. · Zbl 0963.60034
[49] Robert, C.Y. and Rosenbaum, M., A new approach for the dynamics of ultra-high-frequency data: The model with uncertainty zones. J. Financ. Econom., 2011, 9(2), 344-366.
[50] Robert, C.Y. and Rosenbaum, M., Volatility and covariation estimation when microstructure noise and trading times are endogenous. Math. Finance, 2012, 22(1), 133-164. · Zbl 1278.91166
[51] Rosenbaum, M., Estimation of the volatility persistence in a discretely observed diffusion model. Stoch. Process. Appl., 2008, 118(8), 1434-1462. · Zbl 1142.62055
[52] Rosenbaum, M., First order p-variations and Besov spaces. Stat. Probab. Lett., 2009, 79(1), 55-62. · Zbl 1172.60008
[53] Rosenbaum, M., A new microstructure noise index. Quant. Finance, 2011, 11(6), 883-899. · Zbl 1217.91212
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.