×

Asymptotically optimal designs on compact algebraic manifolds. (English) Zbl 1479.05040

Summary: We find \(t\)-designs on compact algebraic manifolds with a number of points comparable to the dimension of the space of polynomials of degree \(t\) on the manifold. This generalizes results on the sphere by A. Bondarenko et al. [Ann. Math. (2) 178, No. 2, 443–452 (2013; Zbl 1270.05026)]. Of special interest is the particular case of the Grassmannians where our results improve the bounds that had been proved previously.

MSC:

05B30 Other designs, configurations
41A55 Approximate quadratures
41A63 Multidimensional problems
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
65D30 Numerical integration
14M15 Grassmannians, Schubert varieties, flag manifolds

Citations:

Zbl 1270.05026

References:

[1] Bachoc, C; Coulangeon, R; Nebe, G, Designs in Grassmannian spaces and lattices, J. Algebraic Combin., 16, 5-19, (2002) · Zbl 1035.05027 · doi:10.1023/A:1020826329555
[2] Bannai, E; Bannai, E, A survey on spherical designs and algebraic combinatorics on spheres, Eur. J. Comb., 30, 1392-1425, (2009) · Zbl 1207.05022 · doi:10.1016/j.ejc.2008.11.007
[3] Bannai, E; Damerell, RM, Tight spherical designs. I, J. Math. Soc. Jpn., 31, 199-207, (1979) · Zbl 0403.05022 · doi:10.2969/jmsj/03110199
[4] Bannai, E; Damerell, RM, Tight spherical designs. II, J. Lond. Math. Soc. (2), 21, 13-30, (1980) · Zbl 0436.05018 · doi:10.1112/jlms/s2-21.1.13
[5] Berman, R.J., Ortega-Cerdà, J.: Sampling of real multivariate polynomials and pluripotential theory. To appear in Am. J. Math. Preprint arXiv:1509.00956 (2015) · Zbl 0980.76070
[6] Bondarenko, A; Radchenko, D; Viazovska, M, Optimal asymptotic bounds for spherical designs, Ann. Math., 178, 443-452, (2013) · Zbl 1270.05026 · doi:10.4007/annals.2013.178.2.2
[7] Bondarenko, A; Radchenko, D; Viazovska, M, Well-separated spherical designs, Constr. Approx., 41, 93-112, (2015) · Zbl 1314.52020 · doi:10.1007/s00365-014-9238-2
[8] Brauchart, JS; Grabner, PJ, Distributing many points on spheres: minimal energy and designs, J. Complex., 31, 293-326, (2015) · Zbl 1320.65007 · doi:10.1016/j.jco.2015.02.003
[9] Breger, A., Ehler, M., Gräf, M.: Quasi Monte Carlo integration and kernel-based function approximation on Grassmannians, Preprint arXiv:1605.09165 (2016) · Zbl 0839.31011
[10] Chen, Y.Q., Cho, Y.J.: Topological Degree Theory and Applications. CRC Press, Boca Raton (2006) · Zbl 1095.47001 · doi:10.1201/9781420011487
[11] Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York (2013) · Zbl 1275.42001 · doi:10.1007/978-1-4614-6660-4
[12] De la Harpe, P., Pache, C.: Cubature formulas, geometrical designs, reproducing kernels, and Markov operators. In: Bartholdi, L., Ceccherini-Silberstein, T., Smirnova-Nagnibeda, T. (ed.), Birkhäuser Basel, Basel (2005) · Zbl 1124.05019
[13] Arias de Reyna, J.: A generalized mean-value theorem. Monatsh. Math 106(2), 95-97 (1988) · Zbl 0689.26002
[14] Delsarte, P; Goethals, JM; Seidel, JJ, Spherical codes and designs, Geom. Dedicata, 6, 363-388, (1977) · Zbl 0376.05015 · doi:10.1007/BF03187604
[15] Filbir, F; Mhaskar, HN, A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel, J. Fourier Anal. Appl., 16, 629-657, (2010) · Zbl 1204.41005 · doi:10.1007/s00041-010-9119-4
[16] Filbir, F; Mhaskar, HN, Marcinkiewicz-Zygmund measures on manifolds, J. Complex., 27, 568-596, (2011) · Zbl 1235.58007 · doi:10.1016/j.jco.2011.03.002
[17] Gautschi, W.: Walter Gautschi. Selected works with commentaries. Vol. 2, Contemporary Mathematicians, Birkhäuser/Springer, New York (2014). Edited by Claude Brezinski and Ahmed Sameh · Zbl 1292.01007
[18] Gigante, G., Leopardi, P.: Diameter bounded equal measure partitions of Ahlfors regular metric measure spaces, arXiv:1510.05236, (2015) · Zbl 1366.52020
[19] Hesse, K; Leopardi, P, The Coulomb energy of spherical designs on \(S^2\), Adv. Comput. Math., 28, 331-354, (2008) · Zbl 1176.31011 · doi:10.1007/s10444-007-9026-7
[20] Hoggar, SG, T-designs in projective spaces, Eur. J. Comb., 3, 233-254, (1982) · Zbl 0526.05016 · doi:10.1016/S0195-6698(82)80035-8
[21] Kane, DM, Small designs for path-connected spaces and path-connected homogeneous spaces, Trans. Am. Math. Soc., 367, 6387-6414, (2015) · Zbl 1317.05025 · doi:10.1090/tran/6250
[22] Korevaar, J; Meyers, JLH, Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere, Integral Transform. Spec. Funct., 1, 105-117, (1993) · Zbl 0823.41026 · doi:10.1080/10652469308819013
[23] Korevaar, J; Meyers, JLH, Chebyshev-type quadrature on multidimensional domains,, J. Approx. Theory, 79, 144-164, (1994) · Zbl 0814.41023 · doi:10.1006/jath.1994.1119
[24] Kuijlaars, A, Chebyshev-type quadrature and partial sums of the exponential series, Math. Comput., 64, 251-263, (1995) · Zbl 0829.65023 · doi:10.1090/S0025-5718-1995-1250771-6
[25] Lyubich, Yu. I., Shatalova, O.A.: Isometric embeddings of finite-dimensional \(l_p\)-spaces over the quaternions. Algebra i Analiz, 16(1), 15-32 (2004); English transl., St. Petersburg Math. J. 16(1) 9-24 (2005) · Zbl 1076.46005
[26] Mhaskar, HN; Narcowich, FJ; Ward, JD, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature, Math. Comput., 70, 1113-1130, (2001) · Zbl 0980.76070 · doi:10.1090/S0025-5718-00-01240-0
[27] Neumaier, A.: Combinatorial Configurations in Terms of Distances. Technische Hogeschool Eindhoven (1981) · Zbl 0436.05018
[28] Rakhmanov, EA; Saff, EB; Zhou, YM, Minimal discrete energy on the sphere, Math. Res. Lett., 1, 647-662, (1994) · Zbl 0839.31011 · doi:10.4310/MRL.1994.v1.n6.a3
[29] Seymour, PD; Zaslavsky, T, Averaging sets: a generalization of mean values and spherical designs, Adv. Math., 52, 213-240, (1984) · Zbl 0596.05012 · doi:10.1016/0001-8708(84)90022-7
[30] Young, R.M.: An Introduction to Nonharmonic Fourier Series, 1st edn. Academic Press Inc, San Diego (2001) · Zbl 0981.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.