×

Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation. (English) Zbl 1472.35089

Summary: Doubly localized two-dimensional rogue waves for the Davey-Stewartson I equation in the background of dark solitons or a constant, are investigated by employing the Kadomtsev-Petviashvili hierarchy reduction method in conjunction with the Hirota’s bilinear technique. These two-dimensional rogue waves, described by semi-rational type solutions, illustrate the resonant collisions between lumps or line rogue waves and dark solitons. Due to the resonant collisions, the line rogue waves and lumps in these semi-rational solutions become doubly localized in two-dimensional space and in time. Thus, they are called line segment rogue waves or lump-typed rogue waves. These waves arise from the background of dark solitons, then exist in the background of dark solitons for a very short period of time, and finally completely decay back to the background of dark solitons. In particular circumstances which are characterized by special parametric conditions, the dark solitons in the long wave component of the DSI equation can degenerate into the constant background. In this case, the rogue waves appear and disappear in a constant background.

MSC:

35C08 Soliton solutions
35C11 Polynomial solutions to PDEs
35F10 Initial value problems for linear first-order PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)

Software:

rogue-waves
Full Text: DOI

References:

[1] Pelinovsky, E.; Kharif, C., Extreme Ocean Waves (2008), Berlin: Springer, Berlin · Zbl 1348.86003
[2] Kharif, C.; Pelinovsky, E.; Slunyaev, A., Rogue Waves in the Ocean (2009), Berlin: Springer, Berlin · Zbl 1230.86001
[3] Akhmediev, N.; Ankiewicz, A.; Taki, M., Waves that appear from nowhere and disappear without a trace, Phys. Lett. A, 373, 6 (2009) · Zbl 1227.76010
[4] Solli, DR; Ropers, C.; Koonath, P.; Jalali, B., Optical rogue waves, Nature, 450, 1054 (2007)
[5] Chabchoub, A.; Hoffmann, NP; Akhmediev, N., Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106, 204502 (2011)
[6] Chabchoub, A.; Hoffmann, NP; Onorato, M.; Slunyaev, A.; Pelinovsky, E.; Akhmediev, N., Observation of a hierarchy of up to fifth-order rogue waves in a water tank, Phys. Rev. E, 86, 056601 (2012)
[7] Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, FT, Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep., 528, 47-89 (2013)
[8] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, JM, The Peregrine soliton in nonlinear fibre optics, Nat. Phys., 6, 790-795 (2010)
[9] Lecaplain, C.; Grelu, Ph; Soto-Crespo, JM; Akhmediev, N., Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser, Phys. Rev. Lett., 108, 233901 (2012)
[10] Birkholz, S.; Nibbering, ETJ; Bre, C.; Skupin, S.; Demircan, A.; Genty, G.; Steinmeyer, G., Spatiotemporal rogue events in optical multiple filamentation, Phys. Rev. Lett., 111, 243903 (2013)
[11] Bailung, H.; Sharma, SK; Nakamura, Y., Observation of Peregrine solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett., 107, 255005 (2011)
[12] Peregrine, DH, Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. B, 25, 16-43 (1983) · Zbl 0526.76018
[13] Guo, B.; Ling, L.; Liu, Q., Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85, 026607 (2012)
[14] Ohta, Y.; Yang, J., General high-order roguewaves and their dynamics in the nonlinear Schrödinger equation, Proc. R. Soc. Lond. A, 468, 1716-1740 (2012) · Zbl 1364.76033
[15] He, J.; Zhang, H.; Wang, L.; Porsezian, K.; Fokas, AS, Generating mechanism for higher order rogue waves, Phys. Rev. E, 87, 052914 (2013)
[16] Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, JM, Rogue waves and rational solutions of the nonlinear Schrödinger equation, Phys. Rev. E, 80, 026601 (2009)
[17] Ling, L.; Guo, B.; Zhao, L., High-order rogue waves in vector nonlinear Schrödinger equations, Phys. Rev. E, 89, 041201 (2014)
[18] Zhao, LC; Guo, B.; Ling, L., Higher-order rogue wave solutions for the coupled nonlinear Schrödinger equations-II, J. Math. Phys., 57, 043508 (2016) · Zbl 1339.35299
[19] Baronio, F.; Degasperis, A.; Conforti, M.; Wabnitz, S., Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves, Phys. Rev. Lett., 109, 044102 (2012)
[20] Baronio, F.; Conforti, M.; Degasperis, A.; Lombardo, S.; Onorato, M.; Wabnitz, S., Vector rogue waves and baseband modulation instability in the defocusing regime, Phys. Rev. Lett., 113, 034101 (2014)
[21] Chen, S.; Mihalache, D., Vector rogue waves in the Manakov system: diversity and compossibility, J. Phys. A: Math. Theor., 48, 215202 (2015) · Zbl 1317.35217
[22] Zhang, G.; Yan, Z., Three-component nonlinear Schrödinger equations: modulational instability, \(N\) th-order vector rational and semi-rational rogue waves and dynamics, Commun Nonlinear Sci Numer Simulat, 62, 117-133 (2018) · Zbl 1470.35343
[23] Bilman, D.; Miller, PD, A robust inverse scattering transform for the focusing nonlinear Schrödinger equation, Commun. Pure and Appl. Math., 72, 1722-1805 (2019) · Zbl 1435.35343
[24] Bilman, D.; Ling, LM; Miller, PD, Extreme superposition: Rogue waves of infinite order and Painleve-III hierarchy, Duke Math. J., 169, 671-760 (2020) · Zbl 1437.35617
[25] Mu, G.; Qin, Z., Dynamic patterns of high-order rogue waves for Sasa-Satsuma equation, Nonlinear Anal. Real World Appl., 31, 179-209 (2016) · Zbl 1345.35106
[26] Wang, LH; Porsezian, K.; He, JS, Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation, Phys. Rev. E, 87, 053202 (2013)
[27] Wang, X.; Li, Y.; Chen, Y., Generalized Darboux transformation and localized waves in coupled Hirota equations, Wave Motion, 51, 1149-1160 (2014) · Zbl 1456.35189
[28] Zhang, G.; Yan, Z.; Wang, L., The general coupled Hirota equations: modulational instability and higher-order vector rogue wave and multi-dark soliton structures Proc, R. Soc. A, 475, 20180625 (2018) · Zbl 1472.78020
[29] Ohta, Y.; Yang, J., Rogue waves in the Davey-Stewartson I equation, Phys. Rev. E, 86, 036604 (2012)
[30] Ohta, Y.; Yang, J., Dynamics of rogue waves in the Davey-Stewartson II equation, J. Phys. A: Math. Theor., 46, 105202 (2013) · Zbl 1311.35298
[31] Ankiewicz, A.; Akhmediev, N.; Soto-Crespo, JM, Discrete rogue waves of the Ablowitz-Ladik and Hirota equations, Phys. Rev. E, 82, 026602 (2010)
[32] Ohta, Y.; Yang, J., General rogue waves in the focusing and defocusing Ablowitz-Ladik equations, J. Phys. A: Math. Theor., 47, 255201 (2014) · Zbl 1294.35121
[33] Wen, X.; Yan, Z.; Malomed, BA, Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: exact solutions and stability, Chaos, 26, 123110 (2016) · Zbl 1378.35284
[34] Chan, HN; Chow, KW; Kedziora, DJ; Grimshaw, RHJ; Ding, E., Rogue wave modes for a derivative nonlinear Schrödinger model, Phys. Rev. E, 89, 032914 (2014)
[35] Yang, B.; Chen, J.; Yang, J., Rogue waves in the generalized derivative nonlinear Schrödinger equations, J. Nonlinear. Sci., 30, 3027-3056 (2020) · Zbl 1467.37063
[36] Chen, S.; Zhou, Y.; Bu, L.; Baronio, F.; Soto-Crespo, JM; Mihalache, D., Super chirped rogue waves in optical fibers, Opt. Exp., 27, 11370-11384 (2019)
[37] Ling, LM; Feng, BF; Zhu, Z., Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation, Physica D, 327, 13-29 (2016) · Zbl 1373.35076
[38] Chow, KW; Chan, HN; Kedziora, DJ; Grimshaw, RHJ, Rogue wave modes for the long wave-short wave resonance model, J. Phys. Soc. Jpn., 82, 074001 (2013)
[39] Wu, C.; Grimshaw, RHJ; Chow, KW; Chan, HN, A coupled AB system: Rogue waves and modulation instabilities, Chaos, 27, 091103 (2017) · Zbl 1390.35334
[40] Zhang, X.; Chen, Y., General high-order rogue waves to nonlinear Schrödinger-Boussinesq equation with the dynamical analysis, Nonlinear Dyn., 93, 2169-2184 (2018) · Zbl 1398.35219
[41] Yang, J.; Yang, B., Rogue waves in the nonlocal \(PT\)-symmetric nonlinear Schrödinger equation, Lett. Math. Phys., 109, 945-973 (2019) · Zbl 1412.35316
[42] Rao, J.; Zhang, Y.; Fokas, AS; He, J., Rogue waves of the nonlocal Davey-Stewartson I equation, Nonlinearity, 31, 4090-4107 (2018) · Zbl 1398.35192
[43] Chen, J.; Chen, Y.; Feng, B., Rational solutions to two-and one-dimensional multicomponent Yajima-Oikawa systems, Phys. Lett. A, 379, 1510-1519 (2015) · Zbl 1370.35076
[44] Benny, DJ; Roskes, GJ, Wave instabilities, Stud. Appl. Math., 47, 377-385 (1969) · Zbl 0216.52904
[45] Davey, A.; Stewartson, K., On three-dimensional packets of surface waves, Proc. R. Soc. Lond. A, 338, 101-110 (1974) · Zbl 0282.76008
[46] Fokas, AS, On the inverse scattering of first order systems in the plane related to nonlinear multidimensional equations, Phys. Rev. Lett., 51, 3-6 (1983)
[47] Fokas, AS; Ablowitz, MJ, On a method of solution for a class of multi-dimensional nonlinear evolution equations, Phys. Rev. Lett., 51, 7-10 (1983)
[48] Fokas, AS; Santini, PM, Dromions and a boundary value problem for the Davey-Stewartson I equation, Physica D, 44, 99-130 (1990) · Zbl 0707.35144
[49] Fokas, AS; Pelinovski, DE; Sulem, C., Interaction of lumps with a line soliton for the DSII equation, Physica D, 152, 189-198 (2001) · Zbl 0977.35132
[50] Charavarty, S.; Kent, SL; Newman, ET, Some reductions of the self-dual Yang-Mills equations to integrable systems in \(2+1\) dimensions, J. Math. Phys., 36, 763-772 (1995) · Zbl 0824.58054
[51] Djordjevict, VD; Redekopp, LG, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech., 79, 703-714 (1977) · Zbl 0351.76016
[52] Ablowitz, MJ; Segur, H., On the evolution of packets of water waves, J. Fluid Mech., 92, 691-715 (1979) · Zbl 0413.76009
[53] Ablowitz, MJ; Biondini, G.; Blair, S., Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials, Phys. Rev. E, 63, 046605 (2001)
[54] Cui, W.; Sun, C.; Huang, G., Dromion excitations in self-defocusing optical media, Chin. Phys. Lett., 20, 246-249 (2003)
[55] Sougleridis, II; Frantzeskakis, DJ; Horikis, TP, A Davey-Stewartson description of two-dimensional solitons in nonlocal media, Stud. Appl. Math., 144, 3-17 (2020) · Zbl 1454.35342
[56] Khismatulin, DB; Akhatov, IS, Sound-ultrasound interaction in bubbly fluids: theory and possible applications, Phys. Fluids, 13, 3582-3598 (2001) · Zbl 1184.76280
[57] Huang, G.; Konotop, VV; Tam, HW; Hu, B., Nonlinear modulation of multidimensional lattice waves, Phys. Rev. E, 64, 056619 (2001)
[58] Satsuma, J.; Ablowitz, MJ, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20, 1496-1503 (1979) · Zbl 0422.35014
[59] Sun, Y.; Tian, B.; Yuan, Y.; Du, Z., Semi-rational solutions for a \((2+1)\)-dimensional Davey-Stewartson system on the surface water waves of finite depth, Nonlinear Dyn., 94, 3029-3040 (2018)
[60] Yuan, Y., Tian, B., Qu. Q,, Zhao. X., Xu, X.: Periodic-wave and semirational solutions for the (2 + 1)-dimensional Davey-Stewartson equations on the surface water waves of finite depth. Z. Angew. Math. Phys. 71, 46 (2020) · Zbl 1439.35411
[61] Tajiri, M.; Arai, T., Quasi-line soliton interactions of the Davey-Stewartson I equation: on the existence of long-range interaction between two quasi-line solitons through a periodic soliton, J. Phys. A: Math. Theor., 44, 235204 (2011) · Zbl 1326.76019
[62] Zhang, X.; Chen, Y.; Tang, X., Rogue wave and a pair of resonance stripe solitons to KP equation, Comput. Math. Appl., 76, 1938-1949 (2018) · Zbl 1442.35408
[63] Yang, J.; Ma, W., Abundant interaction solutions of the KP equation, Nonlinear Dyn., 89, 1539-1544 (2017)
[64] Jia, M., Lou, S.: A predictable rogue wave and generating mechanisms (2018). arXiv:1803.01730v3 [nlin.SI]
[65] Fokas, AS; Pogrebkov, AL, Inverse scattering transform for the KPI equation on the background of a one-line soliton, Nonlinearity, 16, 771-783 (2003) · Zbl 1033.35097
[66] Sato, M., Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds, RIMS Kokyuroku, 439, 30-46 (1981) · Zbl 0507.58029
[67] Jimbo, M.; Miwa, T., Solitons and infinite dimensional Lie algebras, Publ. RIMS Kyoto Univ., 19, 943-1001 (1983) · Zbl 0557.35091
[68] Date, E.; Kashiwara, M.; Jimbo, M.; Miwa, T.; Jimbo, M.; Miwa, T., Transformation groups for soliton equations, Nonlinear Integrable Systems-Classical Theory and Quantum Theory, 39-119 (1983), Singapore: World Scientific, Singapore · Zbl 0571.35106
[69] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1099.35111
[70] Matsuno, Y., Bilinear Transformation Method (1984), New York: Academic Press, New York · Zbl 0552.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.