×

Dynamic patterns of high-order rogue waves for Sasa-Satsuma equation. (English) Zbl 1345.35106

The paper aims to produce generalized higher-order rational and semi-rational solutions to the Sasa-Satsuma equation, which is an integrable extension of the nonlinear Schrödinger equation for a complex functions \(q(x,t)\): \[ iq_t -q_{xx} - 2| q|^2q + i[6(| q|^2q)_x -3(| q|^2)_xq +q_{xxx}] = 0. \] By means of a modified dressing method, higher-order mixed rational-breather solutions are constructed via finding the respective Bloch (alias Jost) functions, in terms of the respective inverse scattering transform, and the related Schur polynomials. Under special conditions imposed on parameters, the mixed solutions go over into purely rational ones, which represent higher-order rogues waves.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q60 PDEs in connection with optics and electromagnetic theory
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Dysthe, K.; Krogstad, H. E.; Müller, P., Oceanic rogue waves, Annu. Rev. Fluid Mech., 40, 287 (2008) · Zbl 1136.76009
[2] Akhmediev, N.; Pelinovsky, E., Editorial-introductory remarks on “discussion and debate: rogue waves—towards a unifying concept?”, Eur. Phys. J. Spec. Top., 185, 1-4 (2010)
[3] Kharif, C.; Pelinovsky, E.; Slunyaev, A., Rogue Waves in the Ocean: Observation, Theories and Modeling (2009), Springer: Springer New York
[4] Didenkulova, I.; Pelinovsky, E., Rogue waves in nonlinear hyperbolic systems (shallow-water framework), Nonlinearity, 24, R1 (2011) · Zbl 1213.35297
[5] Ying, L. H.; Zhuang, Z.; Heller, E. J.; Kaplan, L., Linear and nonlinear rogue wave statistics in the presence of random currents, Nonlinearity, 24, R67 (2011) · Zbl 1227.76012
[6] Sharma, S. K.; Bailung, H., Observation of hole Peregrine soliton in a multicomponent plasma with critical density of negative ions, J. Geophys. Res. Space Phys., 118, 919 (2013)
[7] Solli, D. R.; Ropers, C.; Koonath, P.; Jalali, B., Optical rogue waves, Nature (London), 450, 1054 (2007)
[8] Moslem, W. M.; Shukla, P. K.; Eliasson, B., Surface plasma rogue waves, Europhys. Lett., 96, 25002 (2011)
[9] Ganshin, A. N.; Efimov, V. B.; Kolmakov, G. V.; Mezhov-Deglin, L. P.; McClintock, P. V.E., Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium, Phys. Rev. Lett., 101, Article 065303 pp. (2008)
[10] Shats, M.; Punzmann, H.; Xia, H., Capillary rogue waves, Phys. Rev. Lett., 104, Article 104503 pp. (2010)
[11] Bludov, Y. V.; Konotop, V. V.; Akhmediev, N., Matter rogue waves, Phys. Rev. A, 80, Article 033610 pp. (2009)
[12] Zhao, L. C., Dynamics of nonautonomous rogue waves in Bose-Einstein condensate, Ann. Phys., 329, 73 (2013) · Zbl 1264.82139
[13] Zakharov, V. E.; Shabat, A. B., Exact theory of 2-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 62-69 (1972)
[14] Peregrine, D. H., Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. B, 25, 16-43 (1983) · Zbl 0526.76018
[15] Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J. M., Rogue waves and rational solutions of the nonlinear Schrödinger equation, Phys. Rev. E, 80, Article 026601 pp. (2009) · Zbl 1229.76012
[16] Ankiewicz, A.; Soto-Crespo, J. M.; Akhmediev, N., Rogue waves and rational solutions of the Hirota equation, Phys. Rev. E, 81, Article 046602 pp. (2010)
[17] Ankiewicz, A.; Akhmediev, N.; Soto-Crespo, J. M., Discrete rogue waves of the Ablowitz-Ladik and Hirota equations, Phys. Rev. E, 82, Article 026602 pp. (2010)
[18] Baronio, F.; Degasperis, A.; Conforti, M.; Wabnitz, S., Solutions of the vector nonlinear Schrödinger equations: Evidence for deterministic rogue waves, Phys. Rev. Lett., 109, Article 044102 pp. (2012)
[19] Mu, G.; Qin, Z. Y., Rogue waves for the coupled Schrödinger-Boussinesq equation and the coupled Higgs equation, J. Phys. Soc. Japan, 81, Article 084001 pp. (2012)
[20] Qin, Z. Y.; Mu, G., Matter rogue waves in an \(F = 1\) spinor Bose-Einstein condensate, Phys. Rev. E, 86, Article 036601 pp. (2012)
[21] Mu, G.; Qin, Z. Y., \(N\) th-Order rogue waves to nonlinear Schrödinger equation Revisited: a variable separation technique, J. Phys. Soc. Japan, 83, Article 104001 pp. (2014)
[22] Mu, G.; Qin, Z. Y., Two spatial dimensional \(N\)-rogue waves and their dynamics in Mel’nikov equation, Nonlinear Anal. RWA, 18, 1-13 (2014) · Zbl 1303.35101
[23] Mu, G.; Qin, Z. Y.; Grimshaw, R., Dynamics of Rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation, SIAM J. Appl. Math., 75, 1-20 (2015) · Zbl 1331.35323
[24] Ohta, Y.; Yang, J., General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation, Proc. R. Soc. A, 468, 1716 (2012) · Zbl 1364.76033
[25] Ohta, Y.; Yang, J., Rogue waves in the Davey-Stewartson I equation, Phys. Rev. E, 86, Article 036604 pp. (2012)
[26] Ohta, Y.; Yang, J., General rogue waves in the focusing and defocusing Ablowitz-Ladik equations, J. Phys. A, 47, Article 255201 pp. (2014) · Zbl 1294.35121
[27] Guo, B. L.; Ling, L. M.; Liu, Q. P., Nonlinear Schrödinger equation: Generalezed Darbpix transformation and rogue wave solutions, Phys. Rev. E, 85, Article 026607 pp. (2012)
[29] Chen, S. H.; Mihalache, D., Vector rogue waves in the Manakov system: diversity and compossibility, J. Phys. A, 48, Article 215202 pp. (2015) · Zbl 1317.35217
[30] Wang, X.; Yang, B.; Chen, Y., Higher-order rogue wave solutions of the Kundu-Eckhaus equation, Phys. Scr., 89, Article 095210 pp. (2014)
[31] He, J. S.; Xu, S. W.; Porsezian, K., New types of rogue wave in an Erbium-Doped fibre system, J. Phys. Soc. Japan, 81, Article 033002 pp. (2012)
[32] Xu, S. W.; He, J. S.; Cheng, Y.; Porsezian, K., The \(n\)-order rogue waves of Fokas-Lenells equation, Math. Methods Appl. Sci., 38, 1106 (2015) · Zbl 1318.35112
[33] Zhang, C. C.; Li, C. Z.; He, J. S., Darboux transformation and rogue waves of the Kundu-nonlinear Schrödinger equation, Math. Methods Appl. Sci., 38, 2411 (2015) · Zbl 1317.35010
[34] Trippenbach, M.; Band, Y. B., Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media, Phys. Rev. A, 57, 4791 (1998)
[35] Trulsen, K.; Dysthe, K. B., A modified nonlinear Schrtidinger equation for broader bandwidth gravity waves on deep water, Wave Motion, 24, 281 (1996) · Zbl 0929.76022
[36] Slunyaev, A. V., A high-order nonlinear envelope equation for gravity waves in finite-depth water, J. Exp. Theor. Phys., 101, 926 (2005)
[37] Potasek, M. J., Exact-solutions for an extended nonlinear Schrödinger-equation, Phys. Lett. A, 60, 449 (1991)
[38] Cavalcanti, S. B.; Cressoni, J. C.; da Cruz, H. R.; Gouveia-Neto, A. S., Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation, Phys. Rev. A, 43, 6162 (1991)
[39] Gedalin, M.; Scott, T. C.; Band, Y. B., Optical solitary waves in the higher order nonlinear Schrödinger equation, Phys. Rev. Lett., 78, 448 (1997)
[40] Gilson, C.; Hietarinta, J.; Nimmo, J.; Ohta, Y., Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions, Phys. Rev. E, 68, Article 016614 pp. (2003)
[41] Kim, J.; Han Park, Q.; Shin, H. J., Conservation laws in higher-order nonlinear Schrödinger equations, Phys. Rev. E, 58, 6746 (1998)
[42] Wright, O. C., Sasa-Satsuma equation, unstable plane waves and heteroclinic connections, Chaos Solitons Fractals, 33, 374 (2007) · Zbl 1162.35072
[43] Mihalache, D.; Torner, L.; Moldoveanu, F.; Panoiu, N. C.; Truta, N., Soliton-solutions for a perturbed nonlinear Schrödinger equation, J. Phys. A, 26, L757 (1993) · Zbl 0802.35140
[44] Sasa, N.; Satsuma, J., New-type of soliton-solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Japan, 60, 409 (1991) · Zbl 0920.35128
[45] Mihalache, D.; Panoiu, N. C.; Moldoveanu, F.; Baboiu, D. M., The Riemann problem method for solving a perturbed nonlinear Schrödinger equation describing pulse propagation in optic fibers, J. Phys. A, 27, 6177 (1994) · Zbl 0844.35080
[46] Mihalache, D.; Torner, L.; Moldoveanu, F.; Panoiu, N. C.; Truta, N., Inverse-scattering approach to femtosecond solitons in monomode optical fibers, Phys. Rev. E, 48, 4699 (1993)
[47] Chen, S. H., Twisted rogue-wave pairs in the Sasa-Satsuma equation, Phys. Rev. E, 88, Article 023202 pp. (2013)
[48] Bandelow, U.; Akhmediev, N., Persistence of rogue waves in extended nonlinear Schrödinger equations: integrable Sasa-Satsuma case, Phys. Lett. A, 376, 1558-1561 (2012) · Zbl 1260.35195
[49] Bandelow, U.; Akhmediev, N., Sasa-Satsuma equation: soliton on a background and its limiting cases, Phys. Rev. E, 86, Article 026606 pp. (2012) · Zbl 1260.35195
[50] Akhmediev, N.; Soto-Crespo, J. M.; Devine, N.; Hoffmann, N. P., Rogue wave spectra of the Sasa-Satsuma equation, Physica D, 294, 37 (2015) · Zbl 1364.35324
[51] Ankiewicz, A.; Kedziora, D. J.; Akhmediev, N., Rogue wave triplets, Phys. Lett. A, 375, 2782 (2011) · Zbl 1250.76031
[52] Kedziora, D. J.; Ankiewicz, A.; Akhmediev, N., Triangular rogue wave cascades, Phys. Rev. E, 86, Article 056602 pp. (2012)
[53] Kedziora, D. J.; Ankiewicz, A.; Akhmediev, N., Circular rogue wave clusters, Phys. Rev. E, 84, Article 056611 pp. (2011) · Zbl 1250.76031
[54] Chow, K. W.; Chan, H. N.; Kedziora, D. J.; Grimshaw, R. H.J., Rogue wave modes for the long wave-short wave resonance model, J. Phys. Soc. Japan, 82, Article 074001 pp. (2013)
[55] Chen, S. H.; Soto-Crespo, J. M.; Grelu, P., Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance, Phys. Rev. E, 90, Article 033203 pp. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.