×

Space-time finite element discretization of parabolic optimal control problems with energy regularization. (English) Zbl 1467.65094

In this study, the authors have analyzed fully unstructured simplicial space-time meshes for the numerical solution of the parabolic optimal control problems with energy regularization in the Bochner space \(L^2(0,T;H^{-1}(\Omega))\). They have established the unique solvability in the continuous case with the help of Babuška’s theorem. Further, they have proved the discrete inf-sup condition for any conforming space-time finite element discretization yielding quasi-optimal discretization error estimates. Finally, they have given several numerical experiments to validate theoretical results.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
49J20 Existence theories for optimal control problems involving partial differential equations
49M41 PDE constrained optimization (numerical aspects)
49M25 Discrete approximations in optimal control

References:

[1] A. Alla and S. Volkwein, Asymptotic stability of POD based model predictive control for a semilinear parabolic PDE, Adv. Comput. Math., 41 (2015), pp. 1073-1102. · Zbl 1329.93072
[2] I. Babuška, Error-bounds for finite element method, Numer. Math., 16 (1971), pp. 322-333. · Zbl 0214.42001
[3] I. Babuška and A. Aziz, Survey lectures on the mathematical foundation of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972, pp. 1-359. · Zbl 0268.65052
[4] J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355-378. · Zbl 0839.65135
[5] A. Borzì and V. Schulz, Computational Optimization of Systems Governed by Partial Differential Equations, Comput. Sci. Eng. 8, SIAM, Philadelphia, 2011. · Zbl 1240.90001
[6] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, Cambridge, 2007. · Zbl 1118.65117
[7] A. Bünger, S. Dolgov, and M. Stoll, A low-rank tensor method for PDE-constrained optimization with isogeometric analysis, SIAM J. Sci. Comput., 42 (2020), pp. A140-A161. · Zbl 1429.65061
[8] D. Dier, Non-autonomous maximal regularity for forms of bounded variation, J. Math. Anal. Appl., 425 (2015), pp. 33-54. · Zbl 1330.35058
[9] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, Berlin, 2004. · Zbl 1059.65103
[10] L. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[11] M. J. Gander, \(50\) years of time parallel integration, in Multiple Shooting and Time Domain Decomposition, Springer-Verlag, Berlin, 2015, pp. 69-114. · Zbl 1337.65127
[12] W. Gong, M. Hinze, and Z. Zhou, Space-time finite element approximation of parabolic optimal control problems, J. Numer. Math., 20 (2012), pp. 111-145. · Zbl 1250.65083
[13] M. Gunzburger and A. Kunoth, Space-time adaptive wavelet methods for optimal control problems constrained by parabolic evolution equations, SIAM J. Control Optim., 49 (2011), pp. 1150-1170. · Zbl 1232.65099
[14] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Vol. 23, Springer-Verlag, Berlin, 2009. · Zbl 1167.49001
[15] M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, and W. Zulehner, A finite element solver for a multiharmonic parabolic optimal control problem, Comput. Math. Appl., 65 (2013), pp. 469-486. · Zbl 1319.49043
[16] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Appl. Math. Sci. 49, Springer-Verlag, Berlin, 1985. Translated from the Russian edition, Nauka, Moscow, 1973.
[17] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. Uraltseva, Linear and quasi-linear equations of parabolic type, American Mathematical Society, Providence, RI, 1968. Translated from the Russian edition, Nauka, Moscow, 1967. · Zbl 0164.12302
[18] J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications, Lect. Notes Comput. Sci. Eng. 16, Springer-Verlag, Berlin, 2000.
[19] U. Langer, S. Repin, and M. Wolfmayr, Functional a posteriori error estimates for time-periodic parabolic optimal control problems, Numer. Funct. Anal. Optim., 37 (2016), pp. 1267-1294. · Zbl 1377.49029
[20] U. Langer, O. Steinbach, F. Tröltzsch, and H. Yang, Unstructured space-time finite element methods for optimal control of parabolic equations, SIAM J. Sci. Comput., 43-2 (2021), pp. A744-A771. · Zbl 1460.49002
[21] U. Langer, O. Steinbach, F. Tröltzsch, and H. Yang, Unstructured space-time finite element methods for optimal sparse control of parabolic equations, in Optimization and Control for Partial Differential Equations, R. Herzog et al., eds., Radon Ser. Comput. Appl. Math., de Gruyter, Berlin, 2020, accepted.
[22] J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod Gauthier-Villars, Paris, 1968. · Zbl 0179.41801
[23] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints, SIAM J. Control Optim., 47 (2008), pp. 1150-1177. · Zbl 1161.49026
[24] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: Problems with control constraints, SIAM J. Control Optim., 47 (2008), pp. 1301-1329. · Zbl 1161.49035
[25] I. Neitzel, U. Prüfert, and T. Slawig, A smooth regularization of the projection formula for constrained parabolic optimal control problems, Numer. Funct. Anal. Optim., 33 (2011), pp. 1283-1315. · Zbl 1232.49024
[26] M. Neumüller, Eine Finite Elemente Methode für optimale Kontrollprobleme mit parabolischen Randwertaufgaben, Master’s thesis, TU Graz, 2010.
[27] J. Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 16 (1962), pp. 305-326. · Zbl 0112.33101
[28] A. Schiela and S. Ulbrich, Operator preconditioning for a class of inequality constrained optimal control problems, SIAM J. Optim., 24 (2014), pp. 435-466. · Zbl 1291.65092
[29] V. Schulz and G. Wittum, Transforming smoothers for PDE constrained optimization problems, Comput. Vis. Sci., 11 (2008), pp. 207-219. · Zbl 1522.65107
[30] O. Steinbach, Space-time finite element methods for parabolic problems, Comput. Methods Appl. Math., 15 (2015), pp. 551-566. · Zbl 1329.65229
[31] O. Steinbach and H. Yang, Comparison of algebraic multigrid methods for an adaptive space-time finite-element discretization of the heat equation in \(3\) d and \(4\) d, Numer. Linear Algebra Appl., 25 (2018), p. e2143. · Zbl 1513.65084
[32] O. Steinbach and H. Yang, Space-time finite element methods for parabolic evolution equations: Discretization, a posteriori error estimation, adaptivity and solution, in Space-Time Methods: Application to Partial Differential Equations, O. Steinbach and U. Langer, eds., Radon Ser. Comput. Appl. Math. 25, de Gruyter, Berlin, 2019, pp. 207-248. · Zbl 1453.65344
[33] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comput., 77 (2008), pp. 227-241. · Zbl 1131.65095
[34] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Ser. Comput. Math. 25, 2nd ed., Springer-Verlag, Berlin, 2006. · Zbl 1105.65102
[35] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Grad. Stud. Math. 112, American Mathematical Society, Providence, RI, 2010. · Zbl 1195.49001
[36] E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators, Springer-Verlag, Berlin, 1990. · Zbl 0684.47029
[37] W. Zulehner, Nonstandard norms and robust estimates for saddle point problems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 536-560. · Zbl 1251.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.