×

Asymptotic stability of POD based model predictive control for a semilinear parabolic PDE. (English) Zbl 1329.93072

Summary: A stabilizing feedback control is computed for a semilinear parabolic partial differential equation utilizing a nonlinear model predictive (NMPC) method. In each level of the NMPC algorithm the finite time horizon open loop problem is solved by a reduced-order strategy based on proper orthogonal decomposition (POD). A stability analysis is derived for the combined POD-NMPC algorithm so that the lengths of the finite time horizons are chosen in order to ensure the asymptotic stability of the computed feedback controls. The proposed method is successfully tested by numerical examples.

MSC:

93B52 Feedback control
93D20 Asymptotic stability in control theory
90C30 Nonlinear programming
49L20 Dynamic programming in optimal control and differential games
65K10 Numerical optimization and variational techniques

References:

[1] Alla, A.; Falcone, M.; Kunisch, K. (ed.); Bredies, K. (ed.); Clason, C. (ed.); von Winckel, G. (ed.), An adaptive POD approximation method for the control of advection-diffusion equations, 1-17 (2013), Basel · Zbl 1272.49056 · doi:10.1007/978-3-0348-0631-2_1
[2] Alla, A., Falcone, M.: A time-adaptive pod method for optimal control problems. In: Proceedings of the 1st IFAC Workshop on Control of Systems Modeled by Partial Differential Equations, pp 245-250 (2013)
[3] Allgöwer, F., Findeisen, R., Nagy, Z.K.: Nonlinear model predictive control: from theory to application. J. Chin. Inst. Chem. Engrs. 35, 299-315 (2004)
[4] Allgöwer, F., Chen, H.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34, 1205-1217 (1998) · Zbl 0947.93013 · doi:10.1016/S0005-1098(98)00073-9
[5] Altmüller, N., Grüne, L.: A comparative stability analysis of Neumann and Dirichlet boundary MPC for the heat equation. In: Proceedings of the 1st IFAC Workshop on Control of Systems Modeled by Partial Differential Equations, pp. 1161-1166 (2013)
[6] Altmüller, N., Grüne, L., Worthmann, K.: Receding horizon optimal control for the wave equation. In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 3427-3432, Atlanta (2010)
[7] Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Basel (1997) · Zbl 0890.49011 · doi:10.1007/978-0-8176-4755-1
[8] Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equation. Oxford Science Publications (1998) · Zbl 0926.35049
[9] Chaturantabut, S., Sorensen, D.C.: Discrete Empirical Interpolation for NonLinear Model Reduction. SIAM J. Sci. Comput. 32, 2737-2764 (2010) · Zbl 1217.65169 · doi:10.1137/090766498
[10] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I. Springer, Berlin (2000) · Zbl 0942.35001 · doi:10.1007/978-3-642-58090-1
[11] Evans, L.C.: Partial differential equations. American Math. Society, Providence, Rhode Island (2008) · Zbl 1138.49024
[12] Findeisen, R., Allgöwer, F.: An introduction to nonlinear model predictive control. In: Scherer, C.W., Schumacher, J.M. (eds.) Summerschool on The Impact of Optimization in Control. Dutch Institute of Systems and Control, DISC (2001) · Zbl 1017.93045
[13] Findeisen, R.; Allgöwer, F.; Zinober, A. (ed.); Owens, D. (ed.), The quasi-infinte horizon approach to nonlinear model predictive control., 89-105 (2002), Berlin
[14] Ghiglieri, J., Ulbrich, S.: Optimal Flow Control Based on POD and MPC and an Application to the Cancellation of Tollmien-Schlichting Waves. Submitted (2012) · Zbl 1301.49078
[15] Grüne, L., Pannek, J.: Nonlinear Model Predictive Control. Springer, London (2011) · Zbl 1220.93001 · doi:10.1007/978-0-85729-501-9
[16] Grüne, L., Panneck, J., Seehafer, M., Worthmann, K.: Analysis of unconstrained nonlinear MPC schemes with time varying control horizon. SIAM J. Control. Optim. 48, 4938-4962 (2010) · Zbl 1208.49046 · doi:10.1137/090758696
[17] Gubisch, M., Volkwein, S.: Proper Orthogonal Decomposition for Linear-Quadratic Optimal Control. Submitted (2013). http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-250378
[18] Holmes, P., Lumley, J.L., Berkooz, G., Romley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, 2nd edn. Cambridge University Press (2012) · Zbl 1251.76001
[19] Ito, K., Kunisch, K.: Receding horizon control for infinite dimensional systems. ESAIM, Control, Optim. Calc. Var. 8, 741-760 (2002) · Zbl 1066.49020 · doi:10.1051/cocv:2002032
[20] Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90, 117-148 (2001) · Zbl 1005.65112 · doi:10.1007/s002110100282
[21] Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492-515 (2002) · Zbl 1075.65118 · doi:10.1137/S0036142900382612
[22] Kunisch, K., Volkwein, S., Xie, L.: HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3, 701-722 (2004) · Zbl 1058.35061 · doi:10.1137/030600485
[23] Pannocchia, G., Rawlings, J.B., Wright, S.J.: Conditions under which suboptimal nonlinear MPC is inherently robust. In: 18th IFAC World Congress, Milan (2011) · Zbl 1226.93110
[24] Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, LLC (2009) · Zbl 0947.93013
[25] Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1980) · Zbl 0459.46001
[26] Sachs, E.W., Schu, M.: A-priori error estimates for reduced order models in finance. ESAIM: Math. Model. Numer. Anal. 47, 449-469 (2013) · Zbl 1268.91182 · doi:10.1051/m2an/2012039
[27] Singler, J.R.: New POD expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs. Submitted (2013) · Zbl 1298.65140
[28] Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I-II. Q. Appl. Math. XVL, 561-590 (1987) · Zbl 0676.76047
[29] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and applications. Graduate Studies in Mathematics, Vol. 112, American Mathematical Society (2010) · Zbl 1195.49001
[30] Volkwein, S.: Lagrange-SQP techniques for the control constrained optimal boundary control for the Burgers equation. Comput. Optim. Appl. 26(253), 284 (2003) · Zbl 1077.49024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.