×

On generalized parabolic Hitchin pairs. (English) Zbl 1456.14040

Let \(Y\) be a nodal curve with a single node \(p\) and normalisation a smooth curve \(X\). Let \(p_1, p_2\) be points of \(X\) lying over \(p\). Let \(L\) be a line bundle on \(Y\) and \(L_0\) its pull back to \(X\). A generalised parabolic (\(L_0\)-twisted) Hitchin pair (GPH in short) of rank \(n\) and degree \(d\) is a Hitchin pair \((E,\phi)\) together with a generalised parabolic structure. We recall that \(E\) is a vector bundle of rank \(n\) and degree \(d\) and \(\phi: E \to E \otimes L_0\) is a homomorphism. A generalised parabolic structure consists of a subspace \(F(E) \subset E_{p_1} \oplus E_{p_2}\) of dimension \(n\) with a weight \(\alpha, 0 < \alpha \le 1\). Bhosle had constructed the moduli space \(M_{GPH}\) of \(\alpha\)-semistable GPH and given a proper Hitchin map from it to an affine space \(A\). A GPH is called a good GPH if it preserves \(\phi\), let \(M^{\alpha-st}_{GPH}\) be the moduli space of good \(\alpha\)-stable GPH. There is a morphism \(q: M^{\alpha-st}_{GPH} \to M^{st}_{TFH},\) the latter being the moduli space of stable torsion free (\(L\)-twisted) Hitchin pairs on \(Y\).
The author defines a (stable) Gieseker Hitchin pair data (GHPD in short) generalising the notion of (stable) Gieseker vector bundles by Balaji et al. In case the rank \(n\) and degree \(d\) are coprime, he constructs the moduli space \(M^{st}_{GHPD}\) of these stable objects and shows that it is a normalisation of the moduli space \(M^{\alpha-st}_{GHP}\) of stable Gieseker Hitchin pairs. He shows that the Hitchin map on \(M^{st}_{GHPD}\) is proper. There is a natural morphism \(\pi_0: M^{st}_{GHP} \to M_{TFH}\). The author gives morphisms of moduli schemes \(\pi: M^{st}_{GHPD} \to M^{\alpha-st}_{GHP}\) and \(q_0: M^{st}_{GHPD} \to M^{\alpha-st}_{GPH}\) (for \(\alpha\) close to \(1\) or equal to \(1\)) such that \(\pi_0 \circ \pi = q \circ q_0\).

MSC:

14H60 Vector bundles on curves and their moduli
Full Text: DOI

References:

[1] Balaji V, Barik P and Nagaraj D S, A degeneration of moduli of Hitchin pairs, Int. Math. Res. Notices2016(21) (2016) 6581-6625, https://doi.org/10.1093/imrn/rnv356 · Zbl 1404.14039 · doi:10.1093/imrn/rnv356
[2] Bhosle U N, Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves, Ark. Mat.30(1-2) (1992) 187-215 · Zbl 0773.14006 · doi:10.1007/BF02384869
[3] Bhosle U N, Generalized parabolic Hitchin pairs, J. London Math. Soc.89(1) (2014) 1-23 · Zbl 1435.14034 · doi:10.1112/jlms/jdt058
[4] Bhosle U N, Generalised parabolic bundles and applications II, Proc. Indian Acad. Sci. (Math. Sci.)106 (1996) 403, https://doi.org/10.1007/BF02837696 · Zbl 0879.14012 · doi:10.1007/BF02837696
[5] Faltings G, Moduli-stacks for bundles on semistable curves, Math. Ann.304 (1996) 489, https://doi.org/10.1007/BF01446303 · Zbl 0847.14018 · doi:10.1007/BF01446303
[6] Hartshorne R, Algebraic geometry (1977) (New York: Springer-Verlag) · Zbl 0367.14001
[7] Kausz I, A Gieseker type degeneration of the moduli stacks of vector bundles on curves, Trans. Amer. Math. Soc.357 (2005) 4897-4955, https://doi.org/10.1090/S0002-9947-04-03618-9 · Zbl 1081.14046 · doi:10.1090/S0002-9947-04-03618-9
[8] Knudsen F F, The projectivity of the moduli spaces of stable curves, II: The stacks \[M_{g,n}Mg\],n, Mathematica Scandinavica52(2) (1983) 161-199, http://www.jstor.org/stable/24491475 · Zbl 0544.14020 · doi:10.7146/math.scand.a-12001
[9] Langton S G, Valuative criteria for families of vector bundles on algebraic varieties, Ann. Math. Second Series101(1) (1975) 88-110 · Zbl 0307.14007 · doi:10.2307/1970987
[10] Mehta V and Seshadri C S, Moduli of vector bundles with parabolic structures, Bull. Amer. Math. Soc.83(1) (1977) 124-126 · Zbl 0354.14005 · doi:10.1090/S0002-9904-1977-14210-9
[11] Nagaraj D S and Seshadri C S, Degenerations of the moduli spaces of vector bundles on curves II, Proc. Indian Acad. Sci. (Math. Sci.)107 (1997) 101, https://doi.org/10.1007/BF02837721 · Zbl 0922.14023 · doi:10.1007/BF02837721
[12] Narasimhan M S and Ramadas T R, Factorisation of generalized theta functions. I, Invent Math.114 (1993) 565, https://doi.org/10.1007/BF01232680 · Zbl 0815.14014 · doi:10.1007/BF01232680
[13] Newstead P E, Introduction to Moduli Problems and Orbit spaces (2011) (Tata Institute of Fundamental Research Publications) vol. 17 · Zbl 1277.14001
[14] Nitsure N, Moduli spaces of semistable pairs on curves, Proc. London Math. Soc.62 (1991) 275-300, https://doi.org/10.1112/plms/s3-62.2.275 · Zbl 0733.14005 · doi:10.1112/plms/s3-62.2.275
[15] Seshadri C S, Degenerations of Moduli Spaces: ICTP Notes, ICTP Lecture Notes Series Volume I (ISBN 92-95003-00-4) (2000), http://users.ictp.it/ pub_off/lectures/vol1.html
[16] Simpson C, Moduli of representations of the fundamental Group of a smooth projective variety-I, Publications Mathematiques de I.H.E.S., tome 79 (1994) pp. 47-129, http://www.numdam.org/item?id=PMIHES_1994__79__47_0 · Zbl 0891.14005
[17] Sun X, Remarks on Gieseker’s Degeneration and its Normalization, AMS/IP Studies in Advanced Mathematics, vol. 42 (2008) · Zbl 1177.14075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.