×

Factorisation of generalised theta functions. I. (English) Zbl 0815.14014

Let \(X\) be a compact Riemann surface of genus \(g\), and denote by \({\mathcal U}_ X (d)\) the moduli space of semistable rank-2 vector bundles of degree \(d\). On \({\mathcal U}_ X (d)\) there is a natural polarizing line bundle \(\theta_ X\) which generalizes the line bundle associated with the Riemann theta divisor on the Jacobian of \(X\). For any positive integer \(k\), the space \(H^ 0({\mathcal U}_ X (d), \theta_ X^{\otimes k})\) is called the space of generalized theta functions of order \(k\) on \({\mathcal U}_ X (d)\). These spaces correspond to certain objects arising in conformal quantum field theory, namely to the so-called conformal blocks of level \(k\), and the arguments of physicists suggest that the spaces \(H^ 0({\mathcal U}_ X (d), \theta_ X^{ \otimes k})\) should be related to the spaces of generalized order-\(k\) theta functions for suitable curves \(Y\) of (the lower) genus \(g - 1\). In physics, such a relationship is known under the name “factorization rule” (or “glueing axiom”, respectively). The aim of the present paper is to establish such a relationship by rigorous algebro-geometric methods, i.e., to give an explicit geometric counterpart of that factorization principle in conformal quantum field theory. To this end, the authors consider degenerations of the given curve \(X\) into irreducible curves \(Y\) which are smooth except for a single node. Then the normalization \(\widetilde Y\) of \(Y\) is smooth of genus \(g - 1\). The authors’ main theorem states that, for such a curve \(Y\), the inequality \(g \geq 4\) implies \(H^ 1 ({\mathcal U}_ Y(d), \theta_ Y^{\otimes k}) = H^ 1 ({\mathcal U}_ X (d), \theta_ X^{\otimes k}) = 0\) which, in turn, means that the spaces of generalized theta functions on \({\mathcal U}_ X (d)\) and \({\mathcal U}_ Y (d)\) of order \(k\) are isomorphic.
The second part of the main theorem establishes a “factorization rule” by constructing an isomorphism \(H^ 0 ({\mathcal U}_ Y (d), \theta_ Y^{\otimes k}) \cong \bigoplus_ j H^ 0({\mathcal U}_{\widetilde Y}^ j (d), \theta_ j)\), where \(j\) runs through a certain index domain depending on \(k\), \({\mathcal U}^ j_{\widetilde Y} (d)\) denotes the moduli space of semistable rank-2 vector bundles of degree \(d\) on \(\widetilde Y\) with a certain parabolic structure [in the sense of V. B. Mehta and C. S. Seshadri, Math. Ann. 248, 205-239 (1980; Zbl 0454.14006)], also depending on \(k\), and \(\theta_ j\) is the natural polarizing line bundle (generalized theta bundle) on \({\mathcal U}^ j_{\widetilde Y} (d)\).
The proof of this important relation confirming the physicists’ arguments is rather involved and delicate, since the authors are dealing with nodal curves, for which the moduli spaces of parabolic vector bundles have not been constructed yet. Therefore a great part of the paper is devoted to establishing the existence of moduli spaces of semistable torsion-free sheaves of rank 2 on nodal curves and their properties, including the analysis of their generalized theta bundles. The authors announce that, in a subsequent work, they will remove the restrictional condition \(g \geq 4\) for the vanishing of \(H^ 1({\mathcal U}_ Y (d), \theta_ Y^{\otimes k})\). Then their results can be used to verify the Verlinde formula for the dimension of the spaces of generalized order-\(k\) theta functions on \({\mathcal U}_ X (d)\), which would give another approach in this case, different from the one made by A. Bertram [Invent. Math. 113, No. 2, 351-372 (1993)].

MSC:

14H42 Theta functions and curves; Schottky problem
81T20 Quantum field theory on curved space or space-time backgrounds
14H60 Vector bundles on curves and their moduli
14D22 Fine and coarse moduli spaces
14H10 Families, moduli of curves (algebraic)
14K25 Theta functions and abelian varieties

Citations:

Zbl 0454.14006

References:

[1] Artin, M.: On the solutions of analytic equations. Invent. Math.5, 277-291 (1968) · Zbl 0172.05301 · doi:10.1007/BF01389777
[2] Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra. Reading: Addison-Wesley 1969 · Zbl 0175.03601
[3] Bourbaki, N.: Commutative algebra. Paris: Hermann 1972 · Zbl 0279.13001
[4] Boutot, J.F.: Singularités rationnelles et quotients par les groupes réductifs, Invent. Math.88, 65-68 (1987) · Zbl 0619.14029 · doi:10.1007/BF01405091
[5] Bhosle, U.: Parabolic vector bundles on curves, Arkiv för matematik27, 15-22 (1989) · Zbl 0692.14007 · doi:10.1007/BF02386356
[6] Bhosle, U.: Generalised parabolic bundles and applications to torsion-free sheaves on nodal curves. TIFR preprint 1990, to appear in Arkiv för matematik
[7] Donaldson, S.K.: Polynomial invariants for smooth four-manifolds. Topology29, 257-315 (1990) · Zbl 0715.57007 · doi:10.1016/0040-9383(90)90001-Z
[8] Drezet, J.M., Narasimhan, M.S.: Groupe de Picard des variétés de fibrés semistables sur les courbes algébriques. Invent. Math.97, 53-94 (1989) · Zbl 0689.14012 · doi:10.1007/BF01850655
[9] Grauert, H., Riemenschneider, O.: Verschwindungssätze fur analytische Kohomologiegruppen auf komplexen Räumen. Invent. Math.11, 263-292 (1970) · Zbl 0202.07602 · doi:10.1007/BF01403182
[10] Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométric algébrique IV: les schemas de Hilbert., Exposé 221, Vol. 1960-61, Séminaire Bourbaki
[11] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de lefschetz locaux et globaux (SGA-II). Amsterdam: North-Holland 1968
[12] Grothendieck, A.: Revêtements Étales et Groupe Fondamental (SGA-I). Springer Lecture Notes 224. Berlin-Heidelberg-New York: Springer 1971
[13] Grothendieck, A., Dieudonné, J.: Étude locale des schémas et des morphismes de schémas (iii), Publ. Math. IHES28 (1966)
[14] Grothendieck, A., Dieudonné, J.: Éléments de Géométrie Algébrique I. (new edn.) Grundlehren 166. Berlin-Heidelberg-New York: Springer 1971
[15] Harder, G., Narasimhan, M.S.: On the cohomology groups of the moduli space of vector bundles of on curves. Math. Ann.212, 215-248 (1975) · Zbl 0324.14006 · doi:10.1007/BF01357141
[16] Hartshorne, R.: Algebraic geometry. Berlin-Heidelberg-New York: Springer 1977 · Zbl 0367.14001
[17] Kempf, G.: Cohomology and covexity, in Kempf G et al. (eds.). Toroidal Imbeddings, Springer Lecture Notes, Vol. 339, Berlin-Heidelberg-New York. Springer, 1973
[18] Knop, F.: Der kanonische Moduleines Invariantenrings. J. Algebra127, 40-54 (1989) · Zbl 0716.20021 · doi:10.1016/0021-8693(89)90271-8
[19] Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves I: Preliminaries on ?det? and ?Div?. Math. Scand.39, 19-55 (1976) · Zbl 0343.14008
[20] Kraft, H., Procesi, C.: On the geometry of conjugacy classes in classical groups. Comment. Math. Helv.57, 536-602 (1982) · Zbl 0511.14023 · doi:10.1007/BF02565876
[21] Lang S., Introduction to Arakelov theory. Berlin-Heidelberg-New York: Springer, 1988 · Zbl 0667.14001
[22] Lange, H.: universal families of extensions. J. Algebra83, 101-112 (1983) · Zbl 0518.14008 · doi:10.1016/0021-8693(83)90139-4
[23] Luna, D.: Adehérences d’orbit et invariants. Invent. Math.29, 231-238 (1975) · Zbl 0315.14018 · doi:10.1007/BF01389851
[24] Matsumura, H.: Commutative ring theory. Cambridge University Press, Cambridge: Cambridge University Press, 1986 · Zbl 0603.13001
[25] Mehta, V.B., Seshadri, C.S.: Moduli of vector bundles on curves with parabolic structures. Math. Ann.248, 205-239 (1980) · Zbl 0454.14006 · doi:10.1007/BF01420526
[26] Mumfor, D.: Picard groups of moduli problems. in: Schilling, O.F.G. (ed.) Arithmetical algebraic geometry. New York: Harper and Row
[27] Mumford, D., Fogarty, J.: Geometric invariant theory. 2nd edn. Berlin-Heidelberg-New York.: Springer, 1982 · Zbl 0504.14008
[28] Narasimhan, M.S., Trautmann, G.: Compactification ofM p3 (0, 2) and Poncelet pairs of conics. pacific J. Math.145, 255-365 (1990) · Zbl 0753.14004
[29] Newstead, P.E.: Introduction to moduli problems and orbit spaces. TIFR lecture notes. New Delhi: Narosa 1978 · Zbl 0411.14003
[30] Ramanan, S.: The moduli spaces of vector bundles over an algebraic curve. Math. Ann.200, 69-84 (1973) · doi:10.1007/BF01578292
[31] Schiffman, B., Sommense, A.J.: Vanishing theorems on complex manifolds. Boston-Basel-Stuttgart: Birkhaüser 1985.
[32] Serre, J.P.: Géométrie algébrique et géométrie analytique. Ann. Inst., Fourier6, 1-42 (1956)
[33] Seshadri, C.S.: Quotient spaces modulo reductive algebraic groups. Ann. Math.95, 511-556 (1972) · Zbl 0241.14024 · doi:10.2307/1970870
[34] Seshadri, C.S.: Fibrés vectoriels sur les courbes algébriques (Lectures at the E.N.S., notes by J.M. Drezet) Astérisque96 (1982)
[35] Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety. Princeton University. Preprint 1990
[36] Swan, R.G.: On seminormality. J. Algebra67, 210-229 (1980) · Zbl 0473.13001 · doi:10.1016/0021-8693(80)90318-X
[37] Traverso, C.: Seminormality and Picard group. Ann. Scuola Norm. Sup. Pisa24, 585-595 (1970) · Zbl 0205.50501
[38] Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Studies Pure Math.19, 459-566 (1989) · Zbl 0696.17010
[39] Zariski, O.: Sur la normalité analytique des variétés normales. Ann. Inst. Fourier (Grenoble)2, 161-164 (1950) · Zbl 0044.26601
[40] Zariski, O., Samuel, P.: Commutative algebra. II. Princeton: Van Nostrand 1960 · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.