×

Robin problems involving the \(p(x)\)-Laplacian. (English) Zbl 1427.35072

Summary: By applying Mountain Pass Lemma and Ekeland’s variational principle, we prove two different situations of the existence of solutions for the following Robin problem \[\begin{alignedat}{2} &-\Delta_{p(x)} u = \lambda V(x) | u |^{q(x) - 2} u &\qquad&\text{in } \Omega, \\ &|\nabla u|^{p(x) - 2} \frac{\partial u}{\partial \nu} + \beta(x) | u |^{p(x) - 2} u = 0 \& &\text{on } \partial \Omega, \end{alignedat}\] where \(\Omega \subset \mathbb{R}^N (N \geq 2)\) is a bounded smooth domain, \(V\) is an indefinite weight function which can change sign in \(\Omega\) and \(p, q : \overline{\Omega} \to(1, +\infty)\) are continuous functions.

MSC:

35J62 Quasilinear elliptic equations
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
35J66 Nonlinear boundary value problems for nonlinear elliptic equations
Full Text: DOI

References:

[1] Acerbi, E.; Mingione, G., Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156, 121-140 (2001) · Zbl 0984.49020
[2] Acerbi, E.; Mingione, G., Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math., 584, 117-148 (2005) · Zbl 1093.76003
[3] Allaoui, M., Existence of solutions for a Robin problem involving the \(p(x)\)-Laplacian, Appl. Math. E-Notes, 14, 107-115 (2014) · Zbl 1321.35033
[4] Allaoui, M., Continuous spectrum of Steklov nonhomogeneous elliptic problem, Opusc. Math., 35, 853-866 (2015) · Zbl 1333.35051
[5] Alves, C. O.; Liu, S., On superlinear \(p(x)\)-Laplacian equations in \(r^n\), Nonlinear Anal., 73, 2566-2579 (2010) · Zbl 1194.35142
[6] Antontsev, S.; Shmarev, S., Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 65, 728-761 (2006) · Zbl 1245.35033
[7] Bocea, M.; Mihailescu, M., \(γ\)-convergence of power-law functionals with variable exponents, Nonlinear Anal., 73, 110-121 (2010) · Zbl 1193.35026
[8] Bocea, M.; Mihailescu, M.; Perez-Llanos, M.; Rossi, J. D., Models for growth of heterogeneous sandpiles via mosco convergence, Asymptot. Anal., 78, 11-36 (2012) · Zbl 1252.49014
[9] Bocea, M.; Mihailescu, M.; Popovici, C., On the asymptotic behavior of variable exponent power-law functionals and applications, Ricerche di Matematica, 59, 207-238 (2010) · Zbl 1207.35043
[10] Boureanu, M.; Radulescu, V., Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal., 75, 4471-4482 (2012) · Zbl 1262.35090
[11] Cekic, B.; Mashiyev, R. A., Existence and localization results for p(x)-Laplacian via topological methods, Fixed Point Theory Appl., 2010 (2010), ID 120646 · Zbl 1198.35109
[12] Chabrowski, J.; Fu, Y., Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306, 604-618 (2005) · Zbl 1160.35399
[13] Chen, Y. M.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 1383-1406 (2006) · Zbl 1102.49010
[14] Cruuz-Uribe, D.; Fiorenza, A., Variable lebesgue spaces, Foundations and Harmonic Analysis (2013), Springer: Springer Basel · Zbl 1268.46002
[15] Deng, S. G.; Wang, Q.; Cheng, S., On the \(p(x)\)-Laplacian robin eigenvalue problem, Appl. Math. Comput., 217, 5643-5649 (2011) · Zbl 1210.35170
[16] Deng, S. G., A local mountain pass theorem and applications to a double perturbed \(p(x)\)-Laplacian equations, Appl. Math. Comput., 211, 234-241 (2009) · Zbl 1173.35045
[17] Deng, S. G., Positive solutions for robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl., 360, 548-560 (2009) · Zbl 1181.35099
[18] Diening, L., Theoretical and numerical results for electrorheological uids (2002), University of Frieburg: University of Frieburg Germany, Ph.D. thesis · Zbl 1022.76001
[19] Diening, L., Maximal function on generalized Lebesgue spaces \(l^{p(.)}\), Math. Inequal. Appl., 7, 245-253 (2004) · Zbl 1071.42014
[20] Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M., Lebesgue and Sobolev Spaces with variable Exponents (2011), Springer-Verlang: Springer-Verlang Berlin · Zbl 1222.46002
[21] Ding, X.; Shi, X., Existence and multiplicity of solutions for a general \(p(x)\)-Laplacian Neumann problem, Nonlinear. Anal., 70, 3713-3720 (2009) · Zbl 1170.34311
[22] Edmunds, D. E.; Lang, J.; Nekvinda, A., On \(l^{p(x)}\) norms, Proc. R. Soc. Lond. Ser. A, 455, 219-225 (1999) · Zbl 0953.46018
[23] Edmunds, D. E.; Rakosnik, J., Density of smooth functions in \(w^{ k, p (x)}(ω)\), Proc. R. Soc. Lond. Ser. A, 437, 229-236 (1992) · Zbl 0779.46027
[24] Fan, X. L.; Shen, J. S.; Zhao, D., Sobolev embedding theorems for spaces \(w^{ k, p (x)} \), J. Math. Anal. Appl., 262, 749-760 (2001) · Zbl 0995.46023
[25] Fan, X. L.; Zhao, D., On the spaces \(l^{p(x)}\) and \(w^{ m, p (x)} \), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041
[26] Fan, X. L., Global \(c^{1, α}\) regularity for variable exponent elliptic equations in divergence form, J. Differ. Equ., 235, 397-417 (2007) · Zbl 1143.35040
[27] Fragnelli, G., Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367, 204-228 (2010) · Zbl 1195.35027
[28] Ge, B.; Zhou, Q. M., Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Math. Methods Appl. Sci. (2013)
[29] Halsey, T. C., Electrorheological fluids, Science, 258, 761-766 (1992)
[30] Harjulehto, P.; Hästö, P.; Lê, U.; Nuortio, M., Overview of differential equations with non-standard growth, Nonlinear Anal., 72, 12, 4551-4574 (2010) · Zbl 1188.35072
[31] Kovacik, O.; Rakosnik, J., On spaces \(l^p}(x)\) and \(w^{1, p(x)} \), Czechoslovak Math. J., 41, 592-618 (1991) · Zbl 0784.46029
[32] Mihailescu, M.; Radulescu, V., A continuous spectrum for nonhomogeneous differential operators in Orlicz-Sobolev spaces, Mathematica Scandinavica, 104, 132-146 (2009) · Zbl 1161.35036
[33] Mihăilescu, M.; Rădulescu, V.; Repovs, D., On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, J. Math. Pures Appl., 93, 132-148 (2010) · Zbl 1186.35116
[34] Musielak, J., Orlicz Spaces and Modular Spaces (1983), Springer: Springer Berlin · Zbl 0557.46020
[35] Papageorgiou, N. S.; Radulescu, V., Positive solutions for nonlinear Robin eigenvalue problems, Proc. Am. Math. Soc., 144, 4913-4928 (2016) · Zbl 1355.35082
[36] Rajagopal, K. R.; Ruzicka, M., Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn., 13, 59-78 (2001) · Zbl 0971.76100
[37] Ruzicka, M., Flow of shear dependent electrorheological fluids: unsteady space periodic case, Applied Nonlinear Analysis, 485-504 (1999), Kluwer/Plenum: Kluwer/Plenum New York · Zbl 0954.35138
[38] Ruzicka, M., Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics 1748 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0968.76531
[39] Wang, L. L.; Fan, Y. H.; Ge, W. G., Existence and multiplicity of solutions for a Neumann problem involving the \(p(x)\)-Laplace operator, Nonlinear. Anal., 71, 4259-4270 (2009) · Zbl 1173.35402
[40] Zhang, Q. H., Existence of solutions for \(p(x)\)-Laplacian equations with singular coefficients in \(r^n\), J. Math. Anal. Appl., 348, 38-50 (2008) · Zbl 1156.35035
[41] Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29, 33-66 (1987) · Zbl 0599.49031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.