×

On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting. (English) Zbl 1186.35116

Summary: We study a non-homogeneous eigenvalue problem involving variable growth conditions and a potential \(V\). The problem is analyzed in the context of Orlicz-Sobolev spaces. Connected with this problem we also study the optimization problem for the particular eigenvalue given by the infimum of the Rayleigh quotient associated to the problem with respect to the potential \(V\) when \(V\) lies in a bounded, closed and convex subset of a certain variable exponent Lebesgue space.

MSC:

35P05 General topics in linear spectral theory for PDEs
35J70 Degenerate elliptic equations
35J60 Nonlinear elliptic equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
49K20 Optimality conditions for problems involving partial differential equations
35Q35 PDEs in connection with fluid mechanics

References:

[1] Ashbaugh, M. S.; Harrell, E. M., Maximal and minimal eigenvalues and their associated nonlinear equations, J. Math. Phys., 28, 1770-1786 (1987) · Zbl 0628.47032
[2] Adams, D. R.; Hedberg, L. I., Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, vol. 314 (1996), Springer-Verlag: Springer-Verlag Berlin
[3] Adams, R., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[4] Bonder, J. F.; Del Pezzo, L. M., An optimization problem for the first eigenvalue of the \(p\)-Laplacian plus a potential, Comm. Pure Appl. Anal., 5, 675-690 (2006) · Zbl 1175.35092
[5] Brezis, H., Analyse fonctionnelle: théorie, méthodes et applications (1992), Masson: Masson Paris
[6] Clément, Ph.; García-Huidobro, M.; Manásevich, R.; Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations, Calc. Var., 11, 33-62 (2000) · Zbl 0959.35057
[7] Clément, Ph.; de Pagter, B.; Sweers, G.; de Thélin, F., Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., 1, 241-267 (2004) · Zbl 1167.35352
[8] Edmunds, D. E.; Lang, J.; Nekvinda, A., On \(L^{p(x)}\) norms, Proc. Roy. Soc. London Ser. A, 455, 219-225 (1999) · Zbl 0953.46018
[9] Edmunds, D. E.; Rákosník, J., Density of smooth functions in \(W^{k, p(x)}(\Omega)\), Proc. Roy. Soc. London Ser. A, 437, 229-236 (1992) · Zbl 0779.46027
[10] Edmunds, D. E.; Rákosník, J., Sobolev embedding with variable exponent, Studia Math., 143, 267-293 (2000) · Zbl 0974.46040
[11] Egnell, H., Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems, Ann. Scuola Norm. Sup. Pisa, 14, 1-48 (1987) · Zbl 0649.35072
[12] Fan, X., Remarks on eigenvalue problems involving the \(p(x)\)-Laplacian, J. Math. Anal. Appl., 352, 85-98 (2009) · Zbl 1163.35026
[13] Fan, X.; Zhang, Q.; Zhao, D., Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302, 306-317 (2005) · Zbl 1072.35138
[14] Garciá-Huidobro, M.; Le, V. K.; Manásevich, R.; Schmitt, K., On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting, Nonlinear Differential Equations Appl. (NoDEA), 6, 207-225 (1999) · Zbl 0936.35067
[15] Gossez, J. P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc., 190, 163-205 (1974) · Zbl 0239.35045
[16] Kováčik, O.; Rákosník, J., On spaces \(L^{p(x)}\) and \(W^{1, p(x)}\), Czechoslovak Math. J., 41, 592-618 (1991) · Zbl 0784.46029
[17] Mihăilescu, M.; Rădulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. A: Math., Phys. Engrg. Sci., 462, 2625-2641 (2006) · Zbl 1149.76692
[18] Mihăilescu, M.; Rădulescu, V., On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135, 2929-2937 (2007) · Zbl 1146.35067
[19] Mihăilescu, M.; Rădulescu, V., Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J. Math. Anal. Appl., 330, 416-432 (2007) · Zbl 1176.35071
[20] Mihăilescu, M.; Rădulescu, V., Continuous spectrum for a class of nonhomogeneous differential operators, Manuscripta Math., 125, 157-167 (2008) · Zbl 1138.35070
[21] Mihăilescu, M.; Rădulescu, V., Eigenvalue problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Anal. Appl., 6, 1, 1-16 (2008)
[22] Mihăilescu, M.; Rădulescu, V., Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier, 58, 6, 2087-2111 (2008) · Zbl 1186.35065
[23] Mihăilescu, M.; Rădulescu, V., Spectrum in an unbounded interval for a class of nonhomogeneous differential operators, Bull. London Math. Soc., 40, 6, 972-984 (2008) · Zbl 1171.35085
[24] Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034 (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0557.46020
[25] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces (1991), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0724.46032
[26] Samko, S.; Vakulov, B., Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, J. Math. Anal. Appl., 310, 229-246 (2005) · Zbl 1079.47053
[27] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (1996), Springer: Springer Heidelberg · Zbl 0864.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.