×

On free resolutions of Iwasawa modules. (English) Zbl 1425.11174

The main conjectures of Iwasawa theory provide the only general method known at present for studying the mysterious relationship between purely arithmetic problems and the special values of complex \(L\)-functions, typified by the conjecture of Birch and Swinnerton-Dyer and its generalizations. Over the years, the Iwasawa main conjecture has been formulated in various setups and various guises. The underlying principle in each formulation has been to relate objects on the algebraic side to the objects on the analytic side. On the algebraic side of Iwasawa theory, one studies modules over Iwasawa algebras. An Iwasawa algebra is a completed group ring \(\mathbb{Z}_p[[G]]\), for some \(p\)-adic Lie group \(G\). On the analytic side, one studies \(p\)-adic \(L\)-functions. The \(p\)-adic \(L\)-functions are believed to satisfy certain integrality properties. For example, consider the case when the group \(G\) is isomorphic to \(\mathbb{Z}_p\times \Delta\), for some finite abelian group \(\Delta\). Under suitable conditions, the \(p\)-adic \(L\)-function is known to be a measure. Their results in this paper are motivated by similar integrality properties of \(p\)-adic \(L\)-functions, in the non-commutative setting, as predicted by the non-commutative Iwasawa main conjectures.
Let \(\Lambda\) (isomorphic to \(\mathbb{Z}_p[[T]]\)) denote the usual Iwasawa algebra and \(G\) denote the Galois group of a finite Galois extension \(L/K\) of totally real fields. When the non-primitive Iwasawa module over the cyclotomic \(\mathbb{Z}_p\)-extension has a free resolution of length one over the group ring \(\Lambda[G]\), the authors prove that the validity of the non-commutative Iwasawa main conjecture allows us to find a representative for the non-primitive \(p\)-adic \(L\)-function (which is an element of a \(K_1\)-group) in a maximal \(\Lambda\)-order. This integrality result involves a study of the Dieudonné determinant. Using a cohomological criterion of Greenberg, they also deduce the precise conditions under which the non-primitive Iwasawa module has a free resolution of length one. As one application of the last result, the authors consider an elliptic curve over \(\mathbb{Q}\) with a cyclic isogeny of degree \(p^2\). They relate the characteristic ideal in the ring \(\Lambda\) of the Pontryagin dual of its non-primitive Selmer group to two characteristic ideals, viewed as elements of group rings over \(\Lambda\), associated to two non-primitive classical Iwasawa modules.
Reviewer: Wei Feng (Beijing)

MSC:

11R23 Iwasawa theory
11R34 Galois cohomology
11S25 Galois cohomology

References:

[1] M. Auslander and O. Goldman. Maximal orders. Trans. Amer. Math. Soc., 97:1-24, 1960. DOI 10.2307/1993361; zbl 0117.02506; MR0117252 · Zbl 0117.02506 · doi:10.2307/1993361
[2] D. Barsky. Fonctions zeta \(p\)-adiques d’une classe de rayon des corps de nombres totalement r\'eels. In Groupe d’Etude d’Analyse Ultram\'etrique (5e ann\'ee: 1977/78), pages Exp. No. 16, 23. Secr\'etariat Math., Paris, 1978. zbl 0406.12008; MR0525346 · Zbl 0406.12008
[3] N. Bourbaki. Elements of mathematics. Algebra, Part I: Chapters 1-3. Hermann, Paris; Addison-Wesley Publishing Co., Reading Mass., 1974. Translated from the French. zbl 0281.00006; MR0354207 · Zbl 0281.00006
[4] P. Cassou-Nogu\`es. \(p\)-adic \(L\)-functions for totally real number field. In Proceedings of the Conference on \(p\)-adic Analysis (Nijmegen, 1978), volume 7806 of Report, pages 24-37. Katholieke Univ., Nijmegen, 1978. MR0522119 · Zbl 0411.12008
[5] J. Coates, T. Fukaya, K. Kato, R. Sujatha, and O. Venjakob. The \(\text GL_2\) main conjecture for elliptic curves without complex multiplication. Publ. Math. Inst. Hautes \'Etudes Sci., (101):163-208, 2005. DOI 10.1007/s10240-004-0029-3; zbl 1108.11081; MR2217048; arxiv math/0404297 · Zbl 1108.11081 · doi:10.1007/s10240-004-0029-3
[6] P. M. Cohn. Free ideal rings and localization in general rings, volume 3 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2006. zbl 1114.16001; MR2246388 · Zbl 1114.16001
[7] P. Cornacchia and C. Greither. Fitting ideals of class groups of real fields with prime power conductor. J. Number Theory, 73(2):459-471, 1998. DOI 10.1006/jnth.1998.2300; zbl 0926.11085; MR1658000 · Zbl 0926.11085 · doi:10.1006/jnth.1998.2300
[8] P. Deligne and K. A. Ribet. Values of abelian \(L\)-functions at negative integers over totally real fields. Invent. Math., 59(3):227-86, 1980. DOI 10.1007/BF01453237; zbl 0434.12009; MR0579702 · Zbl 0434.12009 · doi:10.1007/BF01453237
[9] D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry. zbl 0819.13001; MR1322960 · Zbl 0819.13001
[10] B. Ferrero and L. C. Washington. The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields. Ann. of Math. (2), 109(2):377-395, 1979. DOI 10.2307/1971116: zbl 0443.12001; MR0528968 · Zbl 0443.12001 · doi:10.2307/1971116
[11] A. Fr\"ohlich. Local fields. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 1-41. Thompson, Washington, DC, 1967. MR0236145 · Zbl 1492.11160
[12] T. Fukaya and K. Kato. A formulation of conjectures on \(p\)-adic zeta functions in noncommutative Iwasawa theory. In Proceedings of the St. Petersburg Mathematical Society. Vol. XII, volume 219 of Amer. Math. Soc. Transl. Ser. 2, pages 1-85. Amer. Math. Soc., Providence, RI, 2006. zbl 1238.11105; MR2276851 · Zbl 1238.11105
[13] K. R. Goodearl and R. B. Warfield, Jr. An introduction to noncommutative Noetherian rings, volume 61 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, second edition, 2004. zbl 1101.16001; MR2080008 · Zbl 1101.16001
[14] R. Greenberg. On \(p\)-adic \(L\)-functions and cyclotomic fields. II. Nagoya Math. J., 67:139-158, 1977. DOI 10.1017/s0027763000022583; zbl 0373.12007; MR0444614 · Zbl 0373.12007 · doi:10.1017/s0027763000022583
[15] R. Greenberg. On \(p\)-adic Artin \(L\)-functions. Nagoya Math. J., 89:77-87, 1983. DOI 10.1017/s0027763000020250; zbl 0513.12012; MR0692344 · Zbl 0513.12012 · doi:10.1017/s0027763000020250
[16] R. Greenberg. Iwasawa theory for \(p\)-adic representations. Advanced Studies in Pure Math., 17:97-137, 1989. zbl 0739.11045; MR1097613 · Zbl 0739.11045
[17] R. Greenberg. Iwasawa theory for elliptic curves. In Arithmetic theory of elliptic curves (Cetraro, 1997), volume 1716 of Lecture Notes in Math., pages 51-144. Springer, Berlin, 1999. zbl 0946.11027; MR1754686; arxiv math/9809206 · Zbl 0946.11027
[18] R. Greenberg. Introduction to Iwasawa theory for elliptic curves. In Arithmetic algebraic geometry (Park City, UT, 1999), volume 9 of IAS/Park City Math. Ser., pages 407-464. Amer. Math. Soc., Providence, RI, 2001. zbl 1002.11048; MR1860044 · Zbl 1002.11048
[19] R. Greenberg. On the structure of certain Galois cohomology groups. Doc. Math., (Extra Vol.):335-391 (electronic), 2006. https://www.elibm.org/article/10011509; zbl 1138.11048; MR2290593 · Zbl 1138.11048
[20] R. Greenberg. Surjectivity of the global-to-local map defining a Selmer group. Kyoto J. Math., 50(4):853-888, 2010. DOI 10.1215/0023608X-2010-016; zbl 1230.11133; MR2740696 · Zbl 1230.11133 · doi:10.1215/0023608X-2010-016
[21] R. Greenberg. Iwasawa Theory, projective modules, and modular representations. Mem. Amer. Math. Soc., no. 992, 2011. Available at http://www.math.washington.edu/ greenber/NewMod.pdf. DOI 10.1090/s0065-9266-2010-00608-2; zbl 1247.11085; MR2807791 · Zbl 1247.11085 · doi:10.1090/s0065-9266-2010-00608-2
[22] R. Greenberg. On \(p\)-adic Artin \(L\)-functions. II. In Iwasawa Theory 2012, pages 227-245. Springer, 2014. DOI 10.1007/978-3-642-55245-8_7; zbl 1356.11077; MR3586815 · Zbl 1356.11077 · doi:10.1007/978-3-642-55245-8_7
[23] R. Greenberg. On the Structure of Selmer Groups. In Elliptic Curves, Modular Forms and Iwasawa Theory: In Honour of John H. Coates’ 70th Birthday, Cambridge, UK, March 2015 · Zbl 1414.11140 · doi:10.1007/978-3-319-45032-2_6
[24] R. Greenberg and V. Vatsal. On the Iwasawa invariants of elliptic curves. Inventiones Mathematicae, 142(1):17-63, 2000. Available at http://www.math.washington.edu/ greenber/IWINV.ps. DOI 10.1007/s002220000080: zbl 1032.11046; MR1784796; arxiv math/9906215 · Zbl 1032.11046 · doi:10.1007/s002220000080
[25] H. Hida. Modular forms and Galois cohomology, volume 69 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2000. zbl 0952.11014; MR1779182 · Zbl 0952.11014
[26] Y. Hirano. Congruences of Hilbert modular forms over real quadratic fields and the special values of \(L\)-functions: an announcement. In Algebraic number theory and related topics 2013, RIMS K\^oky\^uroku Bessatsu, B53, pages 65-86. Res. Inst. Math. Sci. (RIMS), Kyoto, 2015. zbl 1359.11043; MR3525165 · Zbl 1359.11043
[27] K. Iwasawa. On \(Z_l\)-extensions of algebraic number fields. Ann. of Math. (2), 98:246-326, 1973. DOI 10.2307/1970784; zbl 0285.12008; MR0349627 · Zbl 0285.12008 · doi:10.2307/1970784
[28] N. Jacobson. The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. II. American Mathematical Society, New York, 1943. zbl 0060.07302; MR0008601 · Zbl 0060.07302
[29] H. Johnston and A. Nickel. Hybrid Iwasawa algebras and the equivariant Iwasawa main conjecture. Amer. J. Math., 140(1):245-276, 2018. DOI 10.1353/ajm.2018.0005; zbl 1395.11122; MR3749195; arxiv 1408.4934 · Zbl 1395.11122 · doi:10.1353/ajm.2018.0005
[30] M. Kakde. The main conjecture of Iwasawa theory for totally real fields. Invent. Math., 193(3):539-626, 2013. DOI 10.1007/s00222-012-0436-x; zbl 1300.11112; MR3091976; arxiv 1008.0142 · Zbl 1300.11112 · doi:10.1007/s00222-012-0436-x
[31] Y. Kida. \(l\)-extensions of CM-fields and cyclotomic invariants. J. Number Theory, 12(4):519-528, 1980. DOI 10.1016/0022-314X(80)90042-6; zbl 0455.12007; MR0599821 · Zbl 0455.12007 · doi:10.1016/0022-314X(80)90042-6
[32] T. Y. Lam. A first course in noncommutative rings, volume 131 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001. zbl 0980.16001; MR1838439 · Zbl 0980.16001
[33] H. Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid. zbl 0666.13002; MR1011461 · Zbl 0666.13002
[34] J. C. McConnell and J. C. Robson. Noncommutative Noetherian rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, revised edition, 2001. With the cooperation of L. W. Small. zbl 0980.16019; MR1811901 · Zbl 0980.16019
[35] T. Nakayama and Y. Matsushima. \"Uber die multiplikative Gruppe einer \(p\)-adischen Divisionsalgebra. Proc. Imp. Acad. Tokyo, 19:622-628, 1943. DOI 10.3792/pia/1195573246; zbl 0060.07901; MR0014081 · Zbl 0060.07901 · doi:10.3792/pia/1195573246
[36] J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008. zbl 1136.11001; MR2392026 · Zbl 1136.11001
[37] A. Nichifor. Iwasawa theory for elliptic curves with cyclic isogenies. PhD thesis, University of Washington, 2004. Available at http://www.math.washington.edu/ nichifor/Thesis.pdf
[38] A. Nickel. On the equivariant Tamagawa number conjecture in tame CM-extensions. Math. Z., 268(1-2):1-35, 2011. DOI 10.1007/s00209-009-0658-9; zbl 1222.11133; MR2805422 · Zbl 1222.11133 · doi:10.1007/s00209-009-0658-9
[39] A. Nickel. On the equivariant Tamagawa number conjecture in tame CM-extensions, II. Compos. Math., 147(4):1179-1204, 2011. DOI 10.1112/s0010437x11005331; zbl 1276.11174; MR2822866 · Zbl 1276.11174 · doi:10.1112/s0010437x11005331
[40] R. Oliver. Whitehead groups of finite groups, volume 132 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1988. zbl 0636.18001; MR0933091 · Zbl 0636.18001
[41] V. P. Platonov. Algebraic groups and reduced \(K\)-theory. In Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pages 311-317. Acad. Sci. Fennica, Helsinki, 1980. zbl 0425.16018; MR0562621 · Zbl 0425.16018
[42] M. Ramras. Maximal orders over regular local rings of dimension two. Trans. Amer. Math. Soc., 142:457-479, 1969. DOI 10.2307/1995367; zbl 0186.07101; MR0245572 · Zbl 0186.07101 · doi:10.2307/1995367
[43] I. Reiner. Maximal orders. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1975. London Mathematical Society Monographs, No. 5. zbl 0305.16001; MR0393100 · Zbl 0305.16001
[44] I. Reiner and S. Ullom. Class groups of integral group rings. Trans. Amer. Math. Soc., 170:1-30, 1972. DOI 10.2307/1996291; zbl 0253.16023; MR0304470 · Zbl 0253.16023 · doi:10.2307/1996291
[45] I. Reiner and S. Ullom. A Mayer-Vietoris sequence for class groups. J. Algebra, 31:305-342, 1974. DOI 10.1016/0021-8693(74)90072-6; zbl 0286.12009; MR0349828 · Zbl 0286.12009 · doi:10.1016/0021-8693(74)90072-6
[46] J. Ritter and A. Weiss. Toward equivariant Iwasawa theory. Manuscripta Math., 109(2):131-146, 2002. DOI 10.1007/s00229-002-0306-8; zbl 1014.11066; MR1935024 · Zbl 1014.11066 · doi:10.1007/s00229-002-0306-8
[47] J. Ritter and A. Weiss. Toward equivariant Iwasawa theory. II. Indag. Math. (N.S.), 15(4):549-572, 2004. DOI 10.1016/S0019-3577(04)80018-1; zbl 1142.11369; MR2114937 · Zbl 1142.11369 · doi:10.1016/S0019-3577(04)80018-1
[48] J. Ritter and A. Weiss. On the “main conjecture” of equivariant Iwasawa theory. J. Amer. Math. Soc., 24(4):1015-1050, 2011. DOI 10.1090/S0894-0347-2011-00704-2; zbl 1228.11165; MR2813337; arxiv 1004.2578 · Zbl 1228.11165 · doi:10.1090/S0894-0347-2011-00704-2
[49] L. N. Vaserstein. On the Whitehead determinant for semi-local rings. J. Algebra, 283(2):690-699, 2005. DOI 10.1016/j.jalgebra.2004.09.016; zbl 1059.19002; MR2111217 · Zbl 1059.19002 · doi:10.1016/j.jalgebra.2004.09.016
[50] J. V\'elu. Isog\'enies entre courbes elliptiques. C. R. Acad. Sci. Paris S\'er. A-B, 273:A238-A241, 1971. zbl 0225.14014; MR0294345 · Zbl 0225.14014
[51] O. Venjakob. A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory. With an appendix by Denis Vogel. J. Reine Angew. Math., 559:153-191, 2003. DOI 10.1515/crll.2003.047; zbl 1051.11056; MR1989649; arxiv math/0204358 · Zbl 1051.11056 · doi:10.1515/crll.2003.047
[52] C. A. Weibel. The \(K\)-book, volume 145 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2013. An introduction to algebraic \(K\)-theory. zbl 1273.19001; MR3076731 · Zbl 1273.19001
[53] M. Witte. Non-Commutative Iwasawa Theory for Global Fields. Habilitation thesis, University of Heidelberg, 2017. Available at https://www.mathi.uni-heidelberg.de/ witte/docs/Habilitation.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.