×

Diffusion processes of fragmentary information on scale-free networks. (English) Zbl 1400.91477

Summary: Compartmental models of diffusion over contact networks have proven representative of real-life propagation phenomena among interacting individuals. However, there is a broad class of collective spreading mechanisms departing from compartmental representations, including those for diffusive objects capable of fragmentation and transmission unnecessarily as a whole. Here, we consider a continuous-state susceptible-infected-susceptible (SIS) model as an ideal limit-case of diffusion processes of fragmentary information on networks, where individuals possess fractions of the information content and update them by selectively exchanging messages with partners in the vicinity. Specifically, we incorporate local information, such as neighbors’ node degrees and carried contents, into the individual partner choice, and examine the roles of a variety of such strategies in the information diffusion process, both qualitatively and quantitatively. Our method provides an effective and flexible route of modulating continuous-state diffusion dynamics on networks and has potential in a wide array of practical applications.

MSC:

91D30 Social networks; opinion dynamics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI

References:

[1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: Structure and dynamics, Phys. Rep., 424, 4, 175-308 (2006) · Zbl 1371.82002
[2] Newman, M. E.J., Networks: An Introduction (2010), Oxford University Press · Zbl 1195.94003
[3] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Modern Phys., 87, 925-979 (2015)
[4] Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C. I.; Gómez-Gardeñes, J.; Romance, M.; Sendina-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 1-122 (2014)
[5] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B, 88, 5, 1-15 (2015)
[6] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115, 772, 700-721 (1927) · JFM 53.0517.01
[7] Bailey, N. T.J., The Mathematical Theory of Infectious Diseases and its Applications (1975), Griffin: Griffin London · Zbl 0334.92024
[8] Moore, C.; Newman, M. E.J., Epidemics and percolation in small-world networks, Phys. Rev. E, 61, 5, 5678 (2000)
[9] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 14, 3200-3203 (2001)
[10] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, 65, 3, Article 035108 pp. (2002)
[11] Eguiluz, V. M.; Klemm, K., Epidemic threshold in structured scale-free networks, Phys. Rev. Lett., 89, 10, Article 108701 pp. (2002)
[12] Boguná, M.; Pastor-Satorras, R.; Vespignani, A., Absence of epidemic threshold in scale-free networks with degree correlations, Phys. Rev. Lett., 90, 2, Article 028701 pp. (2003)
[13] Keeling, M., The implications of network structure for epidemic dynamics, Theor. Popul. Biol., 67, 1, 1-8 (2005) · Zbl 1072.92043
[14] Badham, J.; Stocker, R., The impact of network clustering and assortativity on epidemic behaviour, Theor. Popul. Biol., 77, 1, 71-75 (2010)
[15] Cao, L.; Li, X.; Wang, B.; Aihara, K., Rendezvous effects in the diffusion process on bipartite metapopulation networks, Phys. Rev. E, 84, 4, Article 041936 pp. (2011)
[16] Boguñá, M.; Castellano, C.; Pastor-Satorras, R., Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks, Phys. Rev. Lett., 111, 6, Article 068701 pp. (2013)
[17] Graham, M.; House, T., Dynamics of stochastic epidemics on heterogeneous networks, J. Math. Biol., 68, 7, 1583-1605 (2014) · Zbl 1300.92100
[18] Liu, M.; Li, D.; Qin, P.; Liu, C.; Wang, H.; Wang, F., Epidemics in interconnected small-world networks, PLoS One, 10, 3, e0120701 (2015)
[19] Yang, L.-X.; Draief, M.; Yang, X., The impact of the network topology on the viral prevalence: A node-based approach, PLoS One, 10, 7, e0134507 (2015)
[20] Wang, Z.; Andrews, M. A.; Wu, Z.-X.; Wang, L.; Bauch, C. T., Coupled disease-behavior dynamics on complex networks: A review, Phys. Life Rev., 15, 1-29 (2015)
[21] Draief, M.; Massouli, L., Epidemics and Rumours in Complex Networks (2010), Cambridge University Press · Zbl 1202.05128
[22] Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys., 8, 1, 32-39 (2012)
[23] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[24] Capasso, V., Mathematical Structures of Epidemic Systems (1993), Springer Verlag · Zbl 0798.92024
[25] Walter, G. G.; Contreras, M., Compartmental Modeling with Networks (1999), Springer Science & Business Media · Zbl 0929.92001
[26] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653 (2000) · Zbl 0993.92033
[27] Roberts, M.; Andreasen, V.; Lloyd, A.; Pellis, L., Nine challenges for deterministic epidemic models, Epidemics, 10, 49-53 (2015)
[28] Funk, S.; Gilad, E.; Watkins, C.; Jansen, V., The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci., 106, 16, 6872 (2009) · Zbl 1203.91242
[29] Funk, S.; Salathé, M.; Jansen, V., Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7, 50, 1247-1256 (2010)
[30] Cao, L., Infection dynamics in structured populations with disease awareness based on neighborhood contact history, Eur. Phys. J. B, 87, 10, 1-10 (2014)
[31] Yick, J.; Mukherjee, B.; Ghosal, D., Wireless sensor network survey, Comput. Netw., 52, 12, 2292-2330 (2008)
[32] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509 (1999) · Zbl 1226.05223
[33] Barabási, A.-L., Scale-free networks: a decade and beyond, Science, 325, 5939, 412 (2009) · Zbl 1226.91052
[34] Dorogovtsev, S. N.; Mendes, J. F., Evolution of Networks: From Biological Nets to the Internet and WWW (2013), Oxford University Press · Zbl 1109.68537
[35] Yang, R.; Wang, B.-H.; Ren, J.; Bai, W.-J.; Shi, Z.-W.; Wang, W.-X.; Zhou, T., Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A, 364, 3, 189-193 (2007) · Zbl 1203.05144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.