×

Epidemic dynamics on complex networks with general infection rate and immune strategies. (English) Zbl 1404.92189

Summary: This paper mainly aims to study the influence of individuals’ different heterogeneous contact patterns on the spread of the disease. For this purpose, an SIS epidemic model with a general form of heterogeneous infection rate is investigated on complex heterogeneous networks. A qualitative analysis of this model reveals that, depending on the epidemic threshold \(R_0\), either the disease-free equilibrium or the endemic equilibrium is globally asymptotically stable. Interestingly, no matter what functional form the heterogeneous infection rate is, whether the disease will disappear or not is completely determined by the value of \(R_0\), but the heterogeneous infection rate has close relation with the epidemic threshold \(R_0\). Especially, the heterogeneous infection rate can directly affect the final number of infected nodes when the disease is endemic. The obtained results improve and generalize some known results. Finally, based on the heterogeneity of contact patterns, the effects of different immunization schemes are discussed and compared. Meanwhile, we explore the relation between the immunization rate and the recovery rate, which are the two important parameters that can be improved. To illustrate our theoretical results, the corresponding numerical simulations are also included.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
05C90 Applications of graph theory
Full Text: DOI

References:

[1] E. Alfinito, M. Beccaria, A. Fachechi and G. Macorini, Reactive immunization on complex networks, EPL (Europhysics Letters), 117 (2017), 18002.
[2] A. L. Barabási; R. Albert, Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[3] X. Chu; Z. Zhang; J. Guan; S. Zhou, Epidemic spreading with nonlinear infectivity in weighted scale-free networks, Physica A, 390, 471-481 (2011)
[4] R. Cohen, S. Havlin and D. Ben-Avraham, Efficient immunization strategies for computer networks and populations, Phys. Rev. Lett. , 91 (2003), 247901.
[5] X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77 (2008), 036113, 8pp.
[6] S. Huang, Dynamic analysis of an SEIRS model with nonlinear infectivity on complex networks, Int. J. Biomath. , 9 (2016), 1650009, 25pp. · Zbl 1334.92406
[7] S. Huang; F. Chen; L. Chen, Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination, Commun. Nonlinear Sci. Numer. Simul., 43, 296-310 (2017) · Zbl 1465.92058 · doi:10.1016/j.cnsns.2016.07.014
[8] S. Huang; J. Jiang, Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate, Math. Biosci. Eng., 13, 723-739 (2016) · Zbl 1352.92156 · doi:10.3934/mbe.2016016
[9] J. Jiang, On the global stability of cooperative systems, B. Lond. Math. Soc., 26, 455-458 (1994) · Zbl 0820.34030 · doi:10.1112/blms/26.5.455
[10] Z. Jin; G. Sun; H. Zhu, Epidemic models for complex networks with demographics, Math. Biosci. Eng., 11, 1295-1317 (2014) · Zbl 1326.92067 · doi:10.3934/mbe.2014.11.1295
[11] H. Kang; X. Fu, Epidemic spreading and global stability of an SIS model with an infective vector on complex networks, Commun. Nonlinear Sci. Numer. Simul., 27, 30-39 (2015) · Zbl 1457.92168 · doi:10.1016/j.cnsns.2015.02.018
[12] P. D. Leenheer; H. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63, 1313-1327 (2003) · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[13] C. Li; C. Tsai; S. Yang, Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks, Commun. Nonlinear Sci. Numer. Simul., 19, 1042-1054 (2014) · Zbl 1457.92170 · doi:10.1016/j.cnsns.2013.08.033
[14] X. Li; L. Cao, Diffusion processes of fragmentary information on scale-free networks, Physica A, 450, 624-634 (2016) · Zbl 1400.91477 · doi:10.1016/j.physa.2016.01.035
[15] M. Liu and J. Ruan, Modelling of epidemics with a generalized nonlinear incidence on complex networks, Complex Sciences, Springer Berlin Heidelberg, (2009), 2118-2126.
[16] N. Madar; T. Kalisky; R. Cohen; D. ben-Avraham; S. Havlin, Immunization and epidemic dynamics in complex networks, The European Physical Journal B, 38, 269-276 (2004) · doi:10.1140/epjb/e2004-00119-8
[17] V. Nagy, Mean-field theory of a recurrent epidemiological model, Phys. Rev. E, 79 (2009), 066105.
[18] F. Nian; X. Wang, Efficient immunization strategies on complex networks, J. Theor. Biol., 264, 77-83 (2010) · Zbl 1406.92603 · doi:10.1016/j.jtbi.2010.01.007
[19] R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phys. Rev. E, 70 (2004), 030902.
[20] R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. , 86 (2001), 3200. · Zbl 1132.92338
[21] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63 (2001), 066117.
[22] R. Pastor-Satorras; A. Vespignani, Epidemics and immunization in scale-free networks, Handbook of Graphs and Networks: From the Genome to the Internet, 111-130 (2003)
[23] Y. Qin; X. Zhong; H. Jiang; Y. Ye, An environment aware epidemic spreading model and immune strategy in complex networks, Appl. Math. Comput., 261, 206-215 (2015) · Zbl 1410.92135 · doi:10.1016/j.amc.2015.03.110
[24] H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24, 407-435 (1993) · Zbl 0774.34030 · doi:10.1137/0524026
[25] L. Wang; G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68, 1495-1502 (2008) · Zbl 1146.92031 · doi:10.1137/070694582
[26] Q. Wu; X. Fu, Immunization and epidemic threshold of an SIS model in complex networks, Physica A, 444, 576-581 (2016) · Zbl 1400.92558 · doi:10.1016/j.physa.2015.10.043
[27] Q. Wu, X. Fu and G. Zhu, Global attractiveness of discrete-time epidemic outbreak in networks, Int. J. Biomath. , 5 (2012), 1250004, 12pp. · Zbl 1297.92088
[28] R. Yang; B. Wang; J. Ren; W. Bai; Z. Shi; W. Wang; T. Zhou, Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A, 364, 189-193 (2007) · Zbl 1203.05144 · doi:10.1016/j.physleta.2006.12.021
[29] H. Zhang; X. Fu, Spreading of epidemics on scale-free networks with nonlinear infectivity, Nonlinear Anal. Theory Methods Appl., 70, 3273-3278 (2009) · Zbl 1158.92038 · doi:10.1016/j.na.2008.04.031
[30] X. Zhao; Z. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., 4, 421-444 (1996) · Zbl 0888.34038
[31] J. Zhang and J. Sun, Analysis of epidemic spreading with feedback mechanism in weighted networks, Int. J. Biomath. , 8 (2015), 1550007, 11pp. · Zbl 1314.34112
[32] G. Zhu; X. Fu; G. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity, Commun. Nonlinear Sci. Numer. Simul., 17, 2588-2594 (2012) · Zbl 1243.92048 · doi:10.1016/j.cnsns.2011.08.039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.