×

Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition. (English) Zbl 1386.35421

Summary: The stability and Hopf bifurcation of the positive steady state to a general scalar reaction-diffusion equation with distributed delay and Dirichlet boundary condition are investigated in this paper. The time delay follows a Gamma distribution function. Through analyzing the corresponding eigenvalue problems, we rigorously show that Hopf bifurcations will occur when the shape parameter \(n \geq 1\), and the steady state is always stable when \(n = 0\). By computing normal form on the center manifold, the direction of Hopf bifurcation and the stability of the periodic orbits can also be determined under a general setting. Our results show that the number of critical values of delay for Hopf bifurcation is finite and increasing in \(n\), which is significantly different from the discrete delay case, and the first Hopf bifurcation value is decreasing in \(n\). Examples from population biology and numerical simulations are used to illustrate the theoretical results.

MSC:

35R10 Partial functional-differential equations
92B05 General biology and biomathematics
35B32 Bifurcations in context of PDEs
35K57 Reaction-diffusion equations
35B10 Periodic solutions to PDEs
92D40 Ecology
Full Text: DOI

References:

[1] Ashwin, P.; Bartuccelli, M. V.; Bridges, T. J.; Gourley, S. A., Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53, 1, 103-122 (2002) · Zbl 1005.92024
[2] Britton, N. F., Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50, 6, 1663-1688 (1990) · Zbl 0723.92019
[3] Busenberg, S.; Huang, W. Z., Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124, 1, 80-107 (1996) · Zbl 0854.35120
[4] Cantrell, R. S.; Cosner, C., Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology (2003), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester · Zbl 1059.92051
[5] Chen, S. S.; Shi, J. P., Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253, 12, 3440-3470 (2012) · Zbl 1256.35177
[6] Chen, S. S.; Shi, J. P.; Wei, J. J., Time delay-induced instabilities and Hopf bifurcations in general reaction-diffusion systems, J. Nonlinear Sci., 23, 1, 1-38 (2013) · Zbl 1271.34071
[7] Chen, S. S.; Yu, J. S., Stability analysis of a reaction-diffusion equation with spatiotemporal delay and Dirichlet boundary condition, J. Dynam. Differential Equations, 28, 3-4, 857-866 (2016) · Zbl 1350.35026
[8] Chen, S. S.; Yu, J. S., Stability and bifurcations in a nonlocal delayed reaction-diffusion population model, J. Differential Equations, 260, 1, 218-240 (2016) · Zbl 1325.35003
[9] Davidson, F. A.; Gourley, S. A., The effects of temporal delays in a model for a food-limited, diffusing population, J. Math. Anal. Appl., 261, 2, 633-648 (2001) · Zbl 0992.35047
[10] Faria, T., Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352, 5, 2217-2238 (2000) · Zbl 0955.35008
[11] Faria, T.; Huang, W. Z., Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion equation with time delay, (Differential Equations and Dynamical Systems. Differential Equations and Dynamical Systems, Lisbon, 2000. Differential Equations and Dynamical Systems. Differential Equations and Dynamical Systems, Lisbon, 2000, Fields Inst. Commun., vol. 31 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 125-141 · Zbl 1017.34075
[12] Gierer, A.; Meinhardt, H., A theory of biological pattern formation, Biol. Cybernet., 12, 1, 30-39 (1972) · Zbl 1434.92013
[13] Gourley, S. A.; Britton, N. F., Instability of travelling wave solutions of a population model with nonlocal effects, IMA J. Appl. Math., 51, 3, 299-310 (1993) · Zbl 0832.35068
[14] Gourley, S. A.; Britton, N. F., A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34, 3, 297-333 (1996) · Zbl 0840.92018
[15] Gourley, S. A.; Ruan, S. G., Dynamics of the diffusive Nicholson’s blowflies equation with distributed delay, Proc. Roy. Soc. Edinburgh Sect. A, 130, 6, 1275-1291 (2000) · Zbl 0973.34064
[16] Gourley, S. A.; So, J. W.H., Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44, 1, 49-78 (2002) · Zbl 0993.92027
[17] Gourley, S. A.; Wu, J. H., Delayed non-local diffusive systems in biological invasion and disease spread, (Nonlinear Dynamics and Evolution Equations. Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., vol. 48 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 137-200 · Zbl 1130.35127
[18] Green, D.; Stech, H. W., Diffusion and hereditary effects in a class of population models, (Differential Equations and Applications in Ecology, Epidemics, and Population Problems. Differential Equations and Applications in Ecology, Epidemics, and Population Problems, Claremont, Calif., 1981 (1981), Academic Press: Academic Press New York-London), 19-28 · Zbl 0526.92012
[19] Guo, S. J., Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differential Equations, 259, 4, 1409-1448 (2015) · Zbl 1323.35082
[20] Guo, S. J.; Ma, L., Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 26, 2, 545-580 (2016) · Zbl 1335.35120
[21] Guo, S. J.; Yan, S. L., Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260, 1, 781-817 (2016) · Zbl 1330.35029
[22] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Applications of Hopf Bifurcation, London Math. Soc. Lecture Note Ser., vol. 41 (1981), Cambridge University Press: Cambridge University Press Cambridge-New York · Zbl 0474.34002
[23] Hu, R.; Yuan, Y., Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differential Equations, 250, 6, 2779-2806 (2011) · Zbl 1228.35034
[24] Hu, R.; Yuan, Y., Stability and Hopf bifurcation analysis for Nicholson’s blowflies equation with non-local delay, European J. Appl. Math., 23, 6, 777-796 (2012) · Zbl 1257.35187
[25] Kondo, S.; Asai, R., A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376, 6543, 765-768 (1995)
[26] Lengyel, I.; Epstein, I. R., Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science, 251, 4994, 650-652 (1991)
[27] MacDonald, N., Time Lags in Biological Models, Lect. Notes Biomath., vol. 27 (1978), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0403.92020
[28] Meinhardt, H., Models of Biological Pattern Formation, vol. 6 (1982), Academic Press: Academic Press London
[29] Memory, M. C., Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion, SIAM J. Math. Anal., 20, 3, 533-546 (1989) · Zbl 0685.34070
[30] Murray, J. D., Mathematical Biology. II: Spatial Models and Biomedical Applications, Interdiscip. Appl. Math., vol. 18 (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1006.92002
[31] Okubo, A.; Levin, S. A., Diffusion and Ecological Problems: Modern Perspectives, Interdiscip. Appl. Math., vol. 14 (2001), Springer-Verlag: Springer-Verlag New York · Zbl 1027.92022
[32] Sheth, R., Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism, Science, 338, 6113, 1476-1480 (2012)
[33] Smith, F. E., Population dynamics in Daphnia magna and a new model for population growth, Ecology, 44, 4, 651-663 (1963)
[34] So, J. W.H.; Yang, Y. J., Dirichlet problem for the diffusive Nicholson’s blowflies equation, J. Differential Equations, 150, 2, 317-348 (1998) · Zbl 0923.35195
[35] Su, Y.; Wan, A. Y.; Wei, J. J., Bifurcation analysis in a diffusive ‘food-limited’ model with time delay, Appl. Anal., 89, 7, 1161-1181 (2010) · Zbl 1201.35037
[36] Su, Y.; Wei, J. J.; Shi, J. P., Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Differential Equations, 247, 4, 1156-1184 (2009) · Zbl 1203.35029
[37] Su, Y.; Wei, J. J.; Shi, J. P., Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation, Nonlinear Anal. Real World Appl., 11, 3, 1692-1703 (2010) · Zbl 1191.35046
[38] Su, Y.; Wei, J. J.; Shi, J. P., Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24, 4, 897-925 (2012) · Zbl 1263.35028
[39] Su, Y.; Zou, X. F., Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition, Nonlinearity, 27, 1, 87-104 (2014) · Zbl 1297.35025
[40] Turing, A. M., The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B, Biol. Sci., 237, 641, 37-72 (1952) · Zbl 1403.92034
[41] Volterra, V., Remarques sur la note de M. Régnier et Mlle Lambin (étude d’un cas d’antagonisme microbien), C. R. Acad. Sci., 199, 1684-1686 (1934) · JFM 60.0355.01
[42] Wu, J. H., Theory and Applications of Partial Functional-Differential Equations, Appl. Math. Sci., vol. 119 (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0870.35116
[43] Yan, X. P.; Li, W. T., Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model, Nonlinearity, 23, 6, 1413-1431 (2010) · Zbl 1198.37080
[44] Yoshida, K., The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J., 12, 2, 321-348 (1982) · Zbl 0522.35011
[45] Zuo, W. J.; Song, Y. L., Stability and bifurcation analysis of a reaction-diffusion equation with distributed delay, Nonlinear Dynam., 79, 1, 437-454 (2015) · Zbl 1331.35191
[46] Zuo, W. J.; Song, Y. L., Stability and bifurcation analysis of a reaction-diffusion equation with spatio-temporal delay, J. Math. Anal. Appl., 430, 1, 243-261 (2015) · Zbl 1515.35040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.