×

Bifurcation analysis in a diffusive ‘food-limited’ model with time delay. (English) Zbl 1201.35037

The authors investigate the dynamics of a diffusive population model with delay, Dirichlet boundary condition and food-limitation. Existence of positive steady state bifurcation is established by applying phase plane ideas. The occurrence of Hopf bifurcation and of the phenomenon that the unstable positive equilibrium state without dispersion may become stable with dispersion under certain conditions, which are found by analysing the distribution of the eigenvalues. An algorithm to determine the direction and stability of the Hopf bifurcations is derived. Numerical results are given to illustrate the theoretical results.

MSC:

35B32 Bifurcations in context of PDEs
35K57 Reaction-diffusion equations
92B05 General biology and biomathematics
35R10 Partial functional-differential equations
35B35 Stability in context of PDEs
Full Text: DOI

References:

[1] DOI: 10.2307/1933011 · doi:10.2307/1933011
[2] DOI: 10.1080/00036818808839826 · Zbl 0639.34070 · doi:10.1080/00036818808839826
[3] DOI: 10.1016/0022-247X(90)90369-Q · Zbl 0701.92021 · doi:10.1016/0022-247X(90)90369-Q
[4] Wan A, Nonlinear Anal. Real World Appl. (2009)
[5] Wu J, Theory and Applications of Partial Functional-differential Equations (1996) · Zbl 0870.35116
[6] DOI: 10.1155/S1085337503209040 · Zbl 1026.34075 · doi:10.1155/S1085337503209040
[7] DOI: 10.1016/S0022-247X(03)00586-9 · Zbl 1087.34045 · doi:10.1016/S0022-247X(03)00586-9
[8] DOI: 10.1007/s102550200030 · Zbl 1025.34070 · doi:10.1007/s102550200030
[9] Grove EA, Dynam. Syst. Appl. 2 pp 243– (1993)
[10] DOI: 10.1016/j.mcm.2004.03.011 · Zbl 1081.92039 · doi:10.1016/j.mcm.2004.03.011
[11] So JW-H, Proc. Roy. Soc. Edinburgh 125 pp 991– (1995)
[12] DOI: 10.1016/j.jmaa.2003.11.061 · Zbl 1062.34055 · doi:10.1016/j.jmaa.2003.11.061
[13] DOI: 10.1006/jmaa.2001.7563 · Zbl 0992.35047 · doi:10.1006/jmaa.2001.7563
[14] DOI: 10.1016/j.jde.2009.04.017 · Zbl 1203.35029 · doi:10.1016/j.jde.2009.04.017
[15] DOI: 10.1016/S0898-1221(01)00251-6 · Zbl 0998.92029 · doi:10.1016/S0898-1221(01)00251-6
[16] DOI: 10.1017/S0308210500001530 · Zbl 1006.35051 · doi:10.1017/S0308210500001530
[17] DOI: 10.1006/jmaa.1999.6332 · Zbl 0927.35049 · doi:10.1006/jmaa.1999.6332
[18] DOI: 10.1016/j.nonrwa.2006.03.001 · Zbl 1152.35408 · doi:10.1016/j.nonrwa.2006.03.001
[19] Wang JL, J. Math. Appl. 313 pp 382– (2006)
[20] Robinson JC, Infinite-dimensional Dynamical Systems–An Introduction to Dissipative Parabolic PDEs and Theory of Global Attractors (2001) · Zbl 0980.35001
[21] Lin X, Proc. Roy. Soc. Edinburgh 122 pp 237– (1992)
[22] DOI: 10.1090/S0002-9947-00-02280-7 · Zbl 0955.35008 · doi:10.1090/S0002-9947-00-02280-7
[23] Su Y, Nonlinear Anal. Real World Appl. (2009)
[24] Ruan S, Dynam. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 pp 863– (2003)
[25] DOI: 10.1006/jdeq.1995.1144 · Zbl 0836.34068 · doi:10.1006/jdeq.1995.1144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.