×

The number of coefficients of automorphic \(L\)-functions for \(\mathrm{GL}_m\) of same signs. (English) Zbl 1380.11056

Summary: Let \(\pi\) be an irreducible unitary cuspidal representation for \(\mathrm{GL}_m(\mathbb{A}_{\mathbb{Q}})\), and let \(L(s, \pi)\) be the automorphic \(L\)-function attached to \(\pi\), which has a Dirichlet series expression in the half-plane \(\mathrm{Re}\) \(s > 1\). When \(\pi\) is self-contragredient, all the coefficients in the Dirichlet series expression are real. In this paper we give non-trivial lower bounds for the number of positive and negative coefficients, respectively.

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F30 Fourier coefficients of automorphic forms

References:

[1] Barnet-Lamb, T.; Geraghty, D.; Harris, M.; Taylor, R., A family of Calabi-Yau varieties and potential automorphy. II, Publ. Res. Inst. Math. Sci., 47, 1, 29-98 (2011) · Zbl 1264.11044
[2] Halberstam, H.; Richert, H.-E., Sieve Methods, London Math. Soc. Monogr. Ser., vol. 4 (1974), Academic Press: Academic Press London, New York, [A subsidiary of Harcourt Brace Jovanovich, Publishers], xiv+364 pp · Zbl 0298.10026
[3] Hall, R. R.; Tenenbaum, G., Divisors, Cambridge Tracts in Math., vol. 90 (1988), Cambridge University Press: Cambridge University Press Cambridge, xvi+167 pp · Zbl 0653.10001
[4] Harcos, G., Int. Math. Res. Not., 18, 659-660 (2004)
[5] Hildebrand, A., On the number of positive integers ⩽\(x\) and free of prime factors >\(y\), J. Number Theory, 22, 3, 289-307 (1986) · Zbl 0575.10038
[6] Jacquet, H.; Shalika, J. A., On Euler products and the classification of automorphic representations I, Amer. J. Math., 103, 499-558 (1981) · Zbl 0473.12008
[7] Kim, H. H., Functoriality for the exterior square of \(GL_4\) and symmetric fourth of \(GL_2\), J. Amer. Math. Soc., 16, 139-183 (2003), with Appendix 1 by D. Ramakrishnan and Appendix 2 by H. Kim and P. Sarnak · Zbl 1018.11024
[8] Kim, H. H., A note on Fourier coefficients of cusp forms on \(GL_n\), Forum Math., 18, 115-119 (2006) · Zbl 1108.11041
[9] Kim, H. H.; Sarnak, P., Refined estimates towards the Ramanujan and Selberg conjectures, J. Amer. Math. Soc., 16, 1, 175-183 (2003), Appendix 2 to [7]
[10] Landau, E., Über die Anazahl der Gitterpunkte in gewissen Bereichen (Part II), Gott. Nachr., 209-243 (1915) · JFM 45.0312.02
[11] Lau, Y.-K.; Wu, J., The number of Hecke eigenvalues of same signs, Math. Z., 263, 957-970 (2009) · Zbl 1242.11030
[12] Lau, Y.-K.; Liu, J.-Y.; Wu, J., Sign changes of the coefficients of automorphic \(L\)-functions, (Kanemitsu, Shigeru; Li, Hongze; Liu, Jianya, Number Theory: Arithmetic in Shangri-La (2013), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ), 141-181 · Zbl 1353.11076
[13] Liu, J.-Y.; Wang, Y.-H.; Ye, Y.-B., A proof of Selberg’s orthogonality for automorphic \(L\)-functions, Manuscripta Math., 118, 135-149 (2005) · Zbl 1183.11027
[14] Luo, W.-Z.; Rudnick, Z.; Sarnak, P., On the generalized Ramanujan conjecture for \(GL(n)\), (Proceedings of Symposia in Pure Mathematics, vol. 66, Part 2 (1999)), 301-310 · Zbl 0965.11023
[15] Qu, Y., Linnik-type problems for automorphic \(L\)-functions, J. Number Theory, 130, 3, 786-802 (2010) · Zbl 1217.11055
[16] Rudnick, Z.; Sarnak, P., Zeros of principal \(L\)-functions and random matrix theory, Duke Math. J., 81, 269-322 (1996) · Zbl 0866.11050
[17] Serre, J.-P., Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Etudes Sci., 54, 323-401 (1981)
[18] Song, J. M., Sums of nonnegative multiplicative functions over integers without large prime factors. I, Acta Arith., 97, 4, 329-351 (2001) · Zbl 0985.11042
[19] Tenenbaum, G.; Wu, J., Moyennes de certaines fonctions multiplicatives sur les entiers friables, J. Reine Angew. Math., 564, 119-166 (2003) · Zbl 1195.11132
[20] Wu, J.; Ye, Y.-B., Hypothesis H and the prime number theorem for automorphic representations, Funct. Approx., 37, 2, 461-471 (2007) · Zbl 1230.11065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.