×

A note on Fourier coefficients of cusp forms on \(\mathrm{GL}_n\). (English) Zbl 1108.11041

Let \(\pi=\otimes\pi_p\) be a cuspidal automorphic representation of \(\text{GL}_m({\mathbb A}_{\mathbb Q})\). For \(p\) a prime at which \(\pi_p\) is unramified, let \(\text{diag}(\alpha_{1,p},\ldots,\alpha_{m,p})\) be the corresponding Satake parameter. For a positive integer \(k\), let \(a_\pi(p^k)=\alpha_{1,p}^k+\ldots +\alpha_{m,p}^k\). Rudnick and Sarnak made the Hypothesis H: For any fixed \(k\geq 2\), \[ \sum_p\frac{(\log p)^2| a_\pi(p^k)| ^2}{p^k}<\infty. \] They proved it for \(m=2,3\). The author proves the case \(m=4\) and the case when \(\pi\) is the fourth symmetric power of a cuspidal representation of \(\text{GL}_2\).

MSC:

11F30 Fourier coefficients of automorphic forms
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11R42 Zeta functions and \(L\)-functions of number fields
Full Text: DOI

References:

[1] Ki H., Kim and P. Sarnak. J. Amer. Math. Soc. 16 pp 139– (2003)
[2] DOI: 10.2307/3062134 · Zbl 1040.11036 · doi:10.2307/3062134
[3] DOI: 10.1215/S0012-9074-02-11215-0 · Zbl 1074.11027 · doi:10.1215/S0012-9074-02-11215-0
[4] DOI: 10.1215/S0012-7094-96-08115-6 · Zbl 0866.11050 · doi:10.1215/S0012-7094-96-08115-6
[5] DOI: 10.1023/A:1009772219312 · Zbl 1044.11574 · doi:10.1023/A:1009772219312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.