×

Power spectrum of a noisy system close to a heteroclinic orbit. (English) Zbl 1376.82073

Summary: We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form \(Q\sim [\ln (1/D)]^2\). Our results are compared to numerical simulations of the respective Langevin equations.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Bakhtin, Y.: Noisy heteroclinic networks. Probab. Theory Relat. Fields 150(1-2), 1 (2011) · Zbl 1231.34100 · doi:10.1007/s00440-010-0264-0
[2] Burns, S., Xing, D., Shapley, R.: Is gamma-band activity in the local field potential of V1 cortex a “clock” or filtered noise? J. Neurosci. 31, 9658 (2011) · doi:10.1523/JNEUROSCI.0660-11.2011
[3] Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335 (2000) · doi:10.1038/35002125
[4] Ermentrout, G.B., Beverlin, B., Troyer, T., Netoff, T.I.: The variance of phase-resetting curves. J. Comput. Neurosci. 31(2), 185-197 (2011) · Zbl 1446.92044 · doi:10.1007/s10827-010-0305-9
[5] Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (1985)
[6] Giner-Baldó, J.: Stochastic oscillations and their power spectrum. Master’s thesis, Freie Universität Berlin (2016)
[7] Gleeson, J.P., O’Doherty, F.: Non-Lorentzian spectral lineshapes near a Hopf bifurcation. SIAM J. Appl. Math. 66(5), 1669-1688 (2006) · Zbl 1111.70021 · doi:10.1137/040615146
[8] Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, Amsterdam (2012) · Zbl 1239.37001
[9] Jülicher, F., Dierkes, K., Lindner, B., Prost, J., Martin, P.: Spontaneous movements and linear response of a noisy oscillator. Eur. Phys. J. E. 29(4), 449 (2009) · doi:10.1140/epje/i2009-10487-5
[10] Jung, P.: Periodically driven stochastic systems. Phys. Rep. 234, 175 (1993) · doi:10.1016/0370-1573(93)90022-6
[11] Kummer, U., Krajnc, B., Pahle, J., Green, A.K., Dixon, C.J., Marhl, M.: Transition from stochastic to deterministic behavior in calcium oscillations. Biophys. J. 89, 1603 (2005) · doi:10.1529/biophysj.104.057216
[12] Lindner, B., García-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321-424 (2004) · doi:10.1016/j.physrep.2003.10.015
[13] Lindner, B., Schimansky-Geier, L.: Coherence and stochastic resonance in a two-state system. Phys. Rev. E. 61, 6103 (2000) · doi:10.1103/PhysRevE.61.6103
[14] Lindner, B., Sokolov, I.M.: Giant diffusion of underdamped particles in a biased periodic potential. Phys. Rev. E 93, 042106 (2016) · doi:10.1103/PhysRevE.93.042106
[15] Martin, P., Bozovic, D., Choe, Y., Hudspeth, A.J.: Spontaneous oscillation by hair bundles of the bullfrog’s sacculus. J. Neurosci. 23, 4533 (2003)
[16] May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29(2), 243-253 (1975) · Zbl 0314.92008 · doi:10.1137/0129022
[17] Meiss, J.D.: Differential Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia (2007) · Zbl 1144.34001 · doi:10.1137/1.9780898718232
[18] Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4(5), e1000072 (2008) · doi:10.1371/journal.pcbi.1000072
[19] Rabinovich, M.I., Lecanda, P., Huerta, R., Abarbanel, H.D.I., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87(6), 068102 (2001) · doi:10.1103/PhysRevLett.87.068102
[20] Rabinovich, M.I., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78, 1213 (2006) · doi:10.1103/RevModPhys.78.1213
[21] Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1984) · Zbl 0546.60084 · doi:10.1007/978-3-642-96807-5
[22] Shaw, K.M., Park, Y.-M., Chiel, H.J., Thomas, P.J.: Phase resetting in an asymptotically phaseless system: on the phase response of limit cycles verging on a heteroclinic orbit. SIAM J. Appl. Dyn. Syst. 11(1), 350 (2012) · Zbl 1242.34088 · doi:10.1137/110828976
[23] Stone, E., Holmes, P.: Random perturbations of heteroclinic attractors. SIAM J. Appl. Math. 50, 726 (1990) · Zbl 0702.58038 · doi:10.1137/0150043
[24] Stratonovich, R.L.: Topics in the Theory of Random Noise. Gordon and Breach, New York (1967) · Zbl 0183.22007
[25] Thomas, P.J., Lindner, B.: Asymptotic phase of stochastic oscillators. Phys. Rev. Lett. 113, 254101 (2014) · doi:10.1103/PhysRevLett.113.254101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.