×

Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks. (English) Zbl 1368.35036

Summary: The quantitative convergence to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks with mass action kinetics is studied using the so-called entropy method. In the first part of the paper, by deriving explicitly the entropy dissipation, we show that for complex balanced systems without boundary equilibria, each trajectory converges exponentially fast to the unique complex balance equilibrium. Moreover, a constructive proof is proposed to explicitly estimate the rate of convergence in the special case of a cyclic reaction. In the second part of the paper, complex balanced systems with boundary equilibria are considered. We focus on a specific case involving three chemical substances for which the boundary equilibrium is shown to be unstable in some sense, so that exponential convergence to the unique strictly positive equilibrium is recovered.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
80A30 Chemical kinetics in thermodynamics and heat transfer
80A32 Chemically reacting flows

References:

[1] D. F. Ardenson, {\it A proof of the Global Attractor Conjecture in the single linkage class case}, SIAM J. Appl. Math., 71 (2011), pp. 1487-1508. · Zbl 1227.92013
[2] D. F. Ardenson, {\it A Short Note on the Lyapunov Function for Complex-Balanced Chemical Reaction Networks}, 2014, .
[3] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter, {\it On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker––Planck type equations}, Comm. Partial Differential Equations, 26 (2001), pp. 43-100. · Zbl 0982.35113
[4] L. Boltzmann, {\it Neuer Beweis zweier Sätze über das Wärmegleichgewicht unter mehratomigen Gasmoleklen}, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, 95 (1887), pp. 153-164. · JFM 19.1180.01
[5] L. Boltzmann, {\it Gastheorie}, J. A. Barth, Leipzig, 1896.
[6] J. A. Can͂izo, L. Desvillettes, and K. Fellner, {\it Improved duality estimates and applications to reaction-diffusion equations}, Comm. Partial Differential Equations, 39 (2014), pp. 1185-1204. · Zbl 1295.35142
[7] G. Craciun, {\it Toric Differential Inclusions and a Proof of the Global Attractor Conjecture}, preprint, .
[8] G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels, {\it Toric dynamical systems}, J. Symbolic Comput., 44 (2009), pp. 1551-1565. · Zbl 1188.37082
[9] G. Craciun, F. Nazarov, and C. Pantea, {\it Persistence and permanence of mass-action and power-law dynamical systems}, SIAM J. Appl. Math., 73 (2013), pp. 305-329. · Zbl 1277.37106
[10] L. Desvillettes and K. Fellner, {\it Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations}, J. Math. Anal. Appl., 319 (2006), pp. 157-176. · Zbl 1096.35018
[11] L. Desvillettes and K. Fellner, {\it Entropy methods for reaction-diffusion equations: Slowly growing a priori bounds}, Rev. Mat. Iberoam., 24 (2008), pp. 407-431. · Zbl 1171.35330
[12] L. Desvillettes and K. Fellner, {\it Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry}, in System Modeling and Optimization, Springer, Berlin, 2014, pp. 96-104. · Zbl 1327.35374
[13] L. Desvillettes, K. Fellner, M. Pierre, and J. Vovelle, {\it Global existence for quadratic systems of reaction-diffusion}, Adv. Nonlinear Stud., 7 (2007), pp. 491-511. · Zbl 1330.35211
[14] M. Feinberg, {\it Lectures on Chemical Reaction Networks}, University of Wisconsin–Madison, 1979, .
[15] M. Feinberg, {\it Chemical reaction network structure and the stability of complex isothermal reactors}. I. {\it The deficiency zero and deficiency one theorems}, Chem. Eng. Sci., 42 (1987), pp. 2229-2268.
[16] M. Feinberg and F. J. M. Horn, {\it Dynamics of open chemical systems and the algebraic structure of the underlying reaction network}, Chem. Eng. Sci., 29 (1974), pp. 775-787.
[17] K. Fellner and E.-H. Laamri, {\it Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems}, J. Evol. Equ., 16 (2016), pp. 681-704. · Zbl 1360.35025
[18] K. Fellner, E. Latos, and T. Suzuki, {\it Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions}, Discrete Contin. Dyn. Syst. Ser. B., 21 (2016), pp. 3441-3462. · Zbl 1361.35090
[19] K. Fellner, W. Prager, and B. Q. Tang, {\it The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks}, Kinet. Relat. Models, 10 (2017), pp. 1055-1087. · Zbl 1366.35083
[20] K. Fellner and B. Q. Tang, {\it Explicit exponential convergence to equilibrium for mass action reaction-diffusion systems with detailed balance condition}, Nonlinear Anal., 159 (2017), pp. 145-180. · Zbl 1367.35035
[21] J. Fischer, {\it Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems}, Arch. Ration. Mech. Anal., 218 (2015), pp. 553-587. · Zbl 1323.35175
[22] J. Fontbona and B. Jourdain, {\it A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations}, Ann. Probab., 44 (2016), pp. 131-170. · Zbl 1351.60070
[23] I. Gentil and B. Zegarlinski, {\it Asymptotic behaviour of a general reversible chemical reaction-diffusion equation}, Kinet. Relat. Models, 3 (2010), pp. 427-444. · Zbl 1221.35065
[24] A. Glitzky, K. Gröger, and R. Hünlich, {\it Free energy and dissipation rate for reaction-diffusion processes of electrically charged species}, Appl. Anal., 60 (1996), pp. 201-217. · Zbl 0871.35017
[25] A. Glitzky and R. Hünlich, {\it Energetic estimates and asymptotics for electro-reaction-diffusion systems}, ZAMM, Z. Angew. Math. Mech., 77 (1997), pp. 823-832. · Zbl 0887.35024
[26] M. Gopalkrishnan, {\it On the Lyapunov Function for Complex-Balanced Mass-Action Systems}, preprint, , 2013.
[27] M. Gopalkrishnan, E. Miller, and A. Shiu, {\it A geometric approach to the global attractor conjecture}, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 758-797. · Zbl 1301.34063
[28] K. Gröger, {\it Free Energy Estimates and Asymptotic Behaviour of Reaction-Diffusion Processes}, preprint 20, Institut für Angewandte Analysis und Stochastik, Berlin, 1992.
[29] F. J. M. Horn, {\it Necessary and sufficient conditions for complex balancing in chemical kinetics}, Arch. Ration. Mech. Anal., 49 (1972), pp. 172-186.
[30] F. J. M. Horn and R. Jackson, {\it General mass action kinetics}, Arch. Ration. Mech. Anal., 47 (1972), pp. 81-116.
[31] M. Kirane, {\it On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an autocatalytic reversible chemical reaction}, Bull. Inst. Math. Acad. Sin. (N.S.), 18 (1990), pp. 369-377. · Zbl 0731.35056
[32] P. Michel, S. Mischler, and B. Perthame, {\it General relative entropy inequality: An illustration on growth models}, J. Math. Pures Appl., 84 (2005), pp. 1235-1260. · Zbl 1085.35042
[33] A. Mielke, J. Haskovec, and P. A. Markowich, {\it On uniform decay of the entropy for reaction-diffusion systems}, J. Dynam. Differential Equations, 27 (2015), pp. 897-928. · Zbl 1338.35245
[34] C. Pantea, {\it On the persistence and global stability of mass-action systems}, SIAM J. Math. Anal., 44 (2012), pp. 1636-1673. · Zbl 1316.37041
[35] C. V. Pao, {\it Nonlinear Parabolic and Elliptic Equations}, Springer, New York, 1992. · Zbl 0777.35001
[36] M. Pierre, {\it Global existence in reaction-diffusion systems with control of mass: A survey}, Milan J. Math., 78 (2010), pp. 417-455. · Zbl 1222.35106
[37] F. Rothe, {\it Global Solutions of Reaction-Diffusion Systems}, Lecture Notes in Mathematics, 1072, Springer, Berlin, 1984. · Zbl 0546.35003
[38] D. Siegel and M. D. Johnston, {\it Linearization of Complex Balanced Reaction Systems}, preprint, University of Waterloo, Waterloo, Canada, 2008.
[39] G. Toscani and C. Villani, {\it On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds}, J. Stat. Phys., 98 (2000), pp. 1279-1309. · Zbl 1034.82032
[40] A. I. Volpert, {\it Differential equations on graphs}, Mat. Sb., 88 (1972), pp. 578-588 (in Russian); Sb. Math., 17 (1972), pp. 571-582 (in English). · Zbl 0255.35013
[41] R. Wegscheider, {\it Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme}, Monatsh. Chem., 32 (1901), pp. 849-906. · JFM 32.0795.04
[42] D. Willett, {\it A linear generalization of Gronwall’s inequality}, Proc. Amer. Math. Soc., 16 (1965), pp. 774-778. · Zbl 0128.27604
[43] C. Wu, L. Cheng, M. Ha, and E. S. Lee, {\it Convexification of nonconvex functions and application to minimum and maximum principles for nonconvex sets}, Comput. Math. Appl., 31 (1996), pp. 27-36. · Zbl 0873.46013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.