×

Noncommutative polynomials nonnegative on a variety intersect a convex set. (English) Zbl 1327.13090

Let \(V\subset\mathbb R^n\) be an algebraic set and let \({\mathcal P}(V)\) be the ring of polynomial functions on \(V\). Given \(f_1,\dots, f_m\in{\mathcal P}(V)\), define \[ W:= \{x\in V: f_1(x)\geq0,\dots, f_m(x)\geq0\}, \] and let \(P_{W}\) be the cone of \({\mathcal P}(V)\) generated by \(f_1,\dots, f_m\); that is, the family of those \(h\in{\mathcal P}(V)\) that can be written as \(h:= s+\sum_{i=1}^rs_ip_i\) for some nonnegative integer \(r\), where \(s\) and each \(s_i\) are (finite) sums of squares of elements in \({\mathcal P}(V)\) and each \(p_i\) is a (finite) product of some \(f_j\)’s.
The Nichtnegativstellensatz discovered by G. Stengle [Math. Ann. 207, 87–97 (1973; Zbl 0253.14001)] states that a necessary and sufficient condition for a function \(f\in{\mathcal P}(V)\) to be \(\geq0\) on each point in \(W\) is the existence of a nonnegative integer \(k\) and two functions \(g,h\in P_W\) such that \(fg=f^{2m}+h\).
The main result of the article under review is Theorem 1.9, which can be understood as a noncommutative analogue of Stengle’s Nichtnegativstellensatz. I consider that its statement is too technical to be explained here in detail for nonspecialists.
Of course, this very long article (69 pages) contains many other results, more or less in the same vein as the one just quoted. Fortunately, its excellent writing makes it nearly as detailed and self-contained as a book, and so it is not only an excellent paper for specialists but it can also be used to introduce young researchers to this exciting topic.

MSC:

13J30 Real algebra
14A22 Noncommutative algebraic geometry
46L07 Operator spaces and completely bounded maps
90C22 Semidefinite programming
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
14P10 Semialgebraic sets and related spaces

Citations:

Zbl 0253.14001

References:

[1] Agler, J.; McCarthy, J. E., Global holomorphic functions in several non-commuting variables, preprint · Zbl 1311.32001
[2] Ball, J. A.; Bolotnikov, V., Interpolation in the noncommutative Schur-Agler class, J. Operator Theory, 58, 83-126 (2007) · Zbl 1164.47023
[3] Barvinok, A., A Course in Convexity, Grad. Stud. Math., vol. 54 (2002), Amer. Math. Soc. · Zbl 1014.52001
[4] Becker, E.; Neuhaus, R., Computation of real radicals of polynomial ideals, (Computational Algebraic Geometry. Computational Algebraic Geometry, Nice, 1992. Computational Algebraic Geometry. Computational Algebraic Geometry, Nice, 1992, Progr. Math., vol. 109 (1993), Birkhäuser), 1-20 · Zbl 0804.13010
[5] Bôcher, M., Introduction to Higher Algebra (1907), Dover · JFM 39.0118.01
[6] Bochnack, J.; Coste, M.; Roy, M.-F., Real Algebraic Geometry, Ergeb. Math. Grenzgeb., vol. 3 (1998), Springer · Zbl 0912.14023
[7] Bohnenblust, F., Joint positiveness of matrices (1948), California Institute of Technology, available at:
[8] Boyd, S.; Vandenberghe, L., Semidefinite programming, SIAM Rev., 38, 1, 49-95 (1996) · Zbl 0845.65023
[9] Cafuta, K.; Klep, I.; Povh, J., : a computer algebra system for symbolic and numerical computation with noncommutative polynomials, Optim. Methods Softw., 26, 363-380 (2011), available at: · Zbl 1226.90063
[10] Cimprič, J.; Helton, J. W.; McCullough, S.; Nelson, C. S., A non-commutative real Nullstellensatz corresponds to a non-commutative real ideal; Algorithms, Proc. Lond. Math. Soc., 106, 1060-1086 (2013) · Zbl 1270.14029
[11] Curto, R.; Fialkow, L., Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc., 119 (1996) · Zbl 0876.30033
[12] Curto, R.; Fialkow, L., Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc., 136 (1998) · Zbl 0913.47016
[13] de Klerk, E., Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications (2002), Kluwer · Zbl 0991.90098
[14] de Klerk, E.; Terlaky, T.; Roos, K., Self-dual embeddings, (Handbook of Semidefinite Programming (2000), Kluwer), 111-138 · Zbl 0957.90526
[15] Doherty, A. C.; Liang, Y.-C.; Toner, B.; Wehner, S., The quantum moment problem and bounds on entangled multi-prover games, (Twenty-Third Annual IEEE Conference on Computational Complexity (2008), IEEE Computer Soc.), 199-210
[16] Green, E., Multiplicative bases, Gröbner bases and right Gröbner bases, J. Symbolic Comput., 29, 601-623 (2000) · Zbl 1002.16043
[17] Helton, J. W.; de Oliveira, M. C.; Stankus, M.; Miller, R. L., 2013 release edition, available at:
[18] Helton, J. W.; Klep, I.; McCullough, S. A., The convex Positivstellensatz in a free algebra, Adv. Math., 231, 516-534 (2012) · Zbl 1260.14071
[19] Helton, J. W.; Klep, I.; McCullough, S., The matricial relaxation of a linear matrix inequality, Math. Program., 138, 401-445 (2013) · Zbl 1272.15012
[20] Helton, J. W.; McCullough, S., A Positivstellensatz for noncommutative polynomials, Trans. Amer. Math. Soc., 356, 3721-3737 (2004) · Zbl 1071.47005
[21] Helton, J. W.; McCullough, S., Every free basic convex semi-algebraic set has an LMI representation, Ann. of Math. (2), 176, 979-1013 (2012) · Zbl 1260.14011
[22] Helton, J. W.; McCullough, S.; Putinar, M., Strong majorization in a free ⁎-algebra, Math. Z., 255, 579-596 (2007) · Zbl 1117.47010
[23] Helton, J. W.; Vinnikov, V., Linear matrix inequality representation of sets, Comm. Pure Appl. Math., 60, 654-674 (2007) · Zbl 1116.15016
[24] Kalyuzhnyi-Verbovetskiĭ, D.; Vinnikov, V., Foundations of noncommutative function theory, preprint
[25] Klep, I.; Povh, J., Semidefinite programming and sums of hermitian squares of noncommutative polynomials, J. Pure Appl. Algebra, 214, 740-749 (2010) · Zbl 1246.11092
[26] Klep, I.; Schweighofer, M., Infeasibility certificates for linear matrix inequalities, Oberwolfach Prepr. (OWP), 28 (2011)
[27] Klep, I.; Schweighofer, M., An exact duality theory for semidefinite programming based on sums of squares, Math. Oper. Res., 38, 569-590 (2013) · Zbl 1309.13031
[28] Lasserre, J. B., Moments, Positive Polynomials and Their Applications, Imp. Coll. Press Optim. Ser., vol. 1 (2010) · Zbl 1211.90007
[29] Laurent, M., Sums of squares, moment matrices and optimization over polynomials, (Emerging Applications of Algebraic Geometry. Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., vol. 149 (2009), Springer), 157-270, updated version available at: · Zbl 1163.13021
[30] Marshall, M., Positive Polynomials and Sums of Squares, Math. Surveys Monogr., vol. 146 (2008), Amer. Math. Soc. · Zbl 1169.13001
[31] Muhly, P. S.; Solel, B., Progress in noncommutative function theory, Sci. China Ser. A, 54, 2275-2294 (2011) · Zbl 1325.46001
[32] Nelson, C., A real Nullstellensatz for matrices of non-commutative polynomials, preprint
[33] Neuhaus, R., Computation of real radicals of polynomial ideals II, J. Pure Appl. Algebra, 124, 261-280 (1998) · Zbl 0894.13002
[34] Paulsen, V., Completely Bounded Maps and Operator Algebras (2002), Cambridge University Press · Zbl 1029.47003
[35] Pironio, S.; Navascués, M.; Acín, A., Convergent relaxations of polynomial optimization problems with noncommuting variables, SIAM J. Optim., 20, 2157-2180 (2010) · Zbl 1228.90073
[36] Popescu, G., Free holomorphic automorphisms of the unit ball of \(B(H)^n\), J. Reine Angew. Math., 638, 119-168 (2010) · Zbl 1196.47005
[37] Popovych, S., Positivstellensatz and flat functionals on path ⁎-algebras, J. Algebra, 324, 2418-2431 (2010) · Zbl 1219.46068
[38] Prestel, A.; Delzell, C. N., Positive Polynomials. From Hilbert’s 17th Problem to Real Algebra, Springer Monogr. Math. (2001) · Zbl 0987.13016
[39] Putinar, M., Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., 42, 969-984 (1993) · Zbl 0796.12002
[40] Renegar, J., Hyperbolic programs, and their derivative relaxations, Found. Comput. Math., 6, 59-79 (2006) · Zbl 1130.90363
[41] Šafarevič, I., Algebraic Geometry (1999), Springer
[42] Scheiderer, C., Positivity and sums of squares: a guide to recent results, (Emerging Applications of Algebraic Geometry. Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., vol. 149 (2009), Springer), 271-324 · Zbl 1156.14328
[43] Todd, M. J., Semidefinite optimization, Acta Numer., 10, 515-560 (2001) · Zbl 1105.65334
[44] Vinnikov, V., LMI representations of convex semialgebraic sets and determinantal representations of algebraic hypersurfaces: past, present, and future, (Mathematical Methods in Systems, Optimization, and Control. Mathematical Methods in Systems, Optimization, and Control, Oper. Theory Adv. Appl., vol. 222 (2012), Birkhäuser/Springer), 325-349 · Zbl 1276.14069
[45] Voiculescu, D.-V., Free analysis questions I: duality transform for the coalgebra of \(\partial_{X : B}\), Int. Math. Res. Not., 16, 793-822 (2004) · Zbl 1084.46053
[46] Voiculescu, D.-V., Free analysis questions II: the Grassmannian completion and the series expansions at the origin, J. Reine Angew. Math., 645, 155-236 (2010) · Zbl 1228.46058
[47] Voiculescu, D.-V.; Dykema, K. J.; Nica, A., Free Random Variables. A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups (1992), Amer. Math. Soc. · Zbl 0795.46049
[48] (Wolkowicz, H.; Saigal, R.; Vandenberghe, L., Handbook of Semidefinite Programming. Theory, Algorithms, and Applications (2000), Kluwer) · Zbl 0951.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.