×

The convex Positivstellensatz in a free algebra. (English) Zbl 1260.14071

Let \(L\) be a monic linear pencil in \(g\) variables (i.e., there is a natural number \(l\) and symmetric \(l\times l\) matrices \(A_1,\ldots,A_g\) such that \(L=I_l-\sum_{j=1}^gA_jx_j\) where \(x_1,\ldots,x_g\) are noncommuting variables). The monic linear pencil induces a family of semialgebraic sets \(\mathfrak{P}_L=(\mathfrak{P}_L(n))_{n\in\mathbb{N}}\) where \[ \mathfrak{P}_L(n):=\{X\in \mathbb{S}_n^g\mid L(X)\succeq 0\}, \] and \(\mathbb{S}_n^g\) is the set of \(g\)-tuples of symmetric \(n\times n\) matrices. By the conditions imposed on \(L\) each \(\mathfrak{P}_L(n)\) is convex with interior. Conversely by J. W. Helton and S. McCullough [Ann. Math. (2) 176, No. 2, 979–1013 (2012; Zbl 1260.14011)], convex bounded noncommutative semialgebraic sets with interior are all of the form \(\mathfrak{P}_L\).
The main result of the paper under review establishes a perfect noncommutative Nichtnegativstellensatz on \(\mathfrak{P}_L\). It states that a symmetric matrix-valued noncommutative polynomial \(p\) is positive semidefinite on \(\mathfrak{P}_L\) (i.e. \(p(X)\succeq 0\) for all \(X\in \mathfrak{P}_L(n)\) and all \(n\)) if and only if \(p\) has a weighted sum of squares representation with optimal degree bounds: \[ p=s^*s+\sum_j^{\mathrm{finite}}f_j^*Lf_j \] where \(s,f_j\) are matrices of noncommutative polynomials of degree no greater than \(\mathrm{deg}(p)/2\) (and \(*\) is the natural involution on matrix-valued noncommutative polynomials which maps \(x_ix_j\) to \(x_jx_i\)).
A similar result is also shown in the more general setting that the underlying semialgebraic set is defined by a concave matrix-valued noncommutative polynomial.
The Nichtnegativstellensatz in the cases described above improves strongly the result of J. W. Helton and S. McCullough [Trans. Am. Math. Soc. 356, No. 9, 3721–3737 (2004; Zbl 1071.47005)] where the commutative Positivstellensatz of M. Putinar [Indiana Univ. Math. J. 42, No. 3, 969–984 (1993; Zbl 0796.12002)] has been adapted to the noncommutative setting.

MSC:

14P10 Semialgebraic sets and related spaces
13J30 Real algebra
46L07 Operator spaces and completely bounded maps
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
47A57 Linear operator methods in interpolation, moment and extension problems

References:

[1] Barvinok, A., (A Course in Convexity. A Course in Convexity, Graduate Studies in Mathematics, vol. 54 (2002), Amer. Math. Soc.) · Zbl 1014.52001
[2] Blecher, D. P.; Le Merdy, C., Operator Algebras and their Modules—An Operator Space Approach (2004), Oxford Science Publications · Zbl 1061.47002
[3] Bochnack, J.; Coste, M.; Roy, M.-F., (Real Algebraic Geometry. Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3 (1998), Springer) · Zbl 0912.14023
[4] F. Bohnenblust, Joint positiveness of matrices, Technical Report, California Institute of Technology, 1948. Available from: http://orion.uwaterloo.ca/ hwolkowi/henry/book/fronthandbk.d/Bohnenblust.pdf; F. Bohnenblust, Joint positiveness of matrices, Technical Report, California Institute of Technology, 1948. Available from: http://orion.uwaterloo.ca/ hwolkowi/henry/book/fronthandbk.d/Bohnenblust.pdf
[5] Cafuta, K.; Klep, I.; Povh, J., NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials, Optim. Methods Softw., 26, 363-380 (2011), Available from: http://ncsostools.fis.unm.si · Zbl 1226.90063
[6] Curto, R.; Fialkow, L., Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc., 119 (1996) · Zbl 0876.30033
[7] Curto, R.; Fialkow, L., Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc., 136 (1998) · Zbl 0913.47016
[8] Doherty, A. C.; Liang, Y.-C.; Toner, B.; Wehner, S., The quantum moment problem and bounds on entangled multi-prover games, (Twenty-Third Annual IEEE Conference on Computational Complexity (2008), IEEE Computer Soc.), 199-210
[9] Helton, J. W., Positive noncommutative polynomials are sums of squares, Ann. of Math. (2), 156, 675-694 (2002) · Zbl 1033.12001
[10] J.W. Helton, M.C. de Oliveira, M. Stankus, R.L. Miller, NCAlgebra, 2012 release ed. Available from: http://math.ucsd.edu/ ncalg; J.W. Helton, M.C. de Oliveira, M. Stankus, R.L. Miller, NCAlgebra, 2012 release ed. Available from: http://math.ucsd.edu/ ncalg
[11] J.W. Helton, I. Klep, S. McCullough, The matricial relaxation of a linear matrix inequality, Math. Program. (in press). http://arxiv.org/abs/1003.0908; J.W. Helton, I. Klep, S. McCullough, The matricial relaxation of a linear matrix inequality, Math. Program. (in press). http://arxiv.org/abs/1003.0908 · Zbl 1272.15012
[12] Helton, J. W.; Klep, I.; McCullough, S., Convexity and semidefinite programming in dimension-free matrix unknowns, (Anjos, M.; Lasserre, J. B., The Handbook of Semidefinite, Cone and Polynomial Optimization (2012), Springer), 377-405 · Zbl 1334.90103
[13] Helton, J. W.; McCullough, S., A Positivstellensatz for noncommutative polynomials, Trans. Amer. Math. Soc., 356, 3721-3737 (2004) · Zbl 1071.47005
[14] Helton, J. W.; McCullough, S., Convex noncommutative polynomials have degree two or less, SIAM J. Matrix Anal. Appl., 25, 1124-1139 (2004) · Zbl 1102.47009
[15] J.W. Helton, S. McCullough, Every free basic convex semi-algebraic set has an LMI representation, Ann. Math. (in press). http://arxiv.org/abs/0908.4352; J.W. Helton, S. McCullough, Every free basic convex semi-algebraic set has an LMI representation, Ann. Math. (in press). http://arxiv.org/abs/0908.4352 · Zbl 1260.14011
[16] Helton, J. W.; McCullough, S.; Putinar, M., Strong majorization in a free \(\ast \)-algebra, Math. Z., 255, 579-596 (2007) · Zbl 1117.47010
[17] Klep, I.; Schweighofer, M., A nichtnegativstellensatz for polynomials in noncommuting variables, Israel J. Math., 161, 17-27 (2007) · Zbl 1171.47060
[18] I. Klep, M. Schweighofer, Infeasibility certificates for linear matrix inequalities, Oberwolfach Preprints (OWP), vol. 28, 2011. http://arxiv.org/abs/1108.5930; I. Klep, M. Schweighofer, Infeasibility certificates for linear matrix inequalities, Oberwolfach Preprints (OWP), vol. 28, 2011. http://arxiv.org/abs/1108.5930
[19] Lasserre, J. B., (Moments, Positive Polynomials and their Applications. Moments, Positive Polynomials and their Applications, Imperial College Press Optimization Series, vol. 1 (2010)) · Zbl 1211.90007
[20] Laurent, M., Sums of squares, moment matrices and optimization over polynomials, (Emerging Applications of Algebraic Geometry. Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., vol. 149 (2009), Springer), 157-270, Updated version available at: http://homepages.cwi.nl/ monique/files/moment-ima-update-new.pdf · Zbl 1163.13021
[21] Marshall, M., (Positive Polynomials and Sums of Squares. Positive Polynomials and Sums of Squares, Mathematical Surveys and Monographs, vol. 146 (2008), American Mathematical Society) · Zbl 1169.13001
[22] McCullough, S., Factorization of operator-valued polynomials in several noncommuting variables, Linear Algebra Appl., 326, 193-203 (2001) · Zbl 0980.47024
[23] Paulsen, V., Completely Bounded Maps and Operator Algebras (2002), Cambridge University Press · Zbl 1029.47003
[24] Pironio, S.; Navascués, M.; Acín, A., Convergent relaxations of polynomial optimization problems with noncommuting variables, SIAM J. Optim., 20, 2157-2180 (2010) · Zbl 1228.90073
[25] Pisier, G., Introduction to Operator Space Theory (2003), Cambridge University Press · Zbl 1093.46001
[26] Popovych, S., Positivstellensatz and flat functionals on path \(\ast \)-algebras, J. Algebra, 324, 2418-2431 (2010) · Zbl 1219.46068
[27] Prestel, A.; Delzell, C. N., (Positive Polynomials. From Hilbert’s 17th Problem to Real Algebra. Positive Polynomials. From Hilbert’s 17th Problem to Real Algebra, Springer Monographs in Mathematics (2001)) · Zbl 0987.13016
[28] Procesi, C., Rings with Polynomial Identities (1973), Marcel Dekker, Inc. · Zbl 0262.16018
[29] Putinar, M., Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., 42, 969-984 (1993) · Zbl 0796.12002
[30] Rowen, L. H., Polynomial Identities in Ring Theory (1980), Academic Press · Zbl 0461.16001
[31] Scheiderer, C., Positivity and sums of squares: a guide to recent results, (Emerging Applications of Algebraic Geometry. Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., vol. 149 (2009), Springer), 271-324 · Zbl 1156.14328
[32] Schmüdgen, K., The \(K\)-moment problem for compact semi-algebraic sets, Math. Ann., 289, 203-206 (1991) · Zbl 0744.44008
[33] A. Zalar, A note on a matrix version of the Farkas lemma. Preprint. http://arxiv.org/abs/1012.5420; A. Zalar, A note on a matrix version of the Farkas lemma. Preprint. http://arxiv.org/abs/1012.5420 · Zbl 1273.13044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.