×

Decay estimates for nonlinear nonlocal diffusion problems in the whole space. (English) Zbl 1297.35038

Summary: We obtain bounds for the decay rate in the \(L^r(\mathbb R^d)\)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, \[ u_t(x,t)=\int_{\mathbb R^d}K(x,y)|u(y,t)-u(x,t)|^{p-2}(u(y,t)-u(x,t))dy,\quad x\in\mathbb R^d,\quad t>0. \] We consider a kernel of the form \(K(x,y)=\psi(y-a(x))+\psi(x-a(y))\), where \(\psi\) is a bounded, nonnegative function supported in the unit ball and \(a\) is a linear function \(a(x)=Ax\). To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form \[ T(u)=-\int_{\mathbb R^d}K(x,y)|u(y)-u(x)|^{p-2}(u(y)-u(x))dy,\quad 1\leqslant p<\infty. \] The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space \(\mathbb R^d\): \[ \lambda _{1,p}(\mathbb R^d)=2\left(\int_{\mathbb R^d}\psi(z)dz\right)\left|\frac{1}{|\det A|^{1/p}}-1\right|^p. \] Moreover, we deal with the \(p=\infty\) eigenvalue problem, studying the limit of \(\lambda_{1,p}^{1/p}\) as \(p\to\infty\).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
45K05 Integro-partial differential equations
35R09 Integro-partial differential equations
35B45 A priori estimates in context of PDEs
35P15 Estimates of eigenvalues in context of PDEs

References:

[1] F. Andreu, J. M. Mazon, J. D. Rossi, and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations, J. Evol. Equ. 8 (2008), 189–215. · Zbl 1154.35314 · doi:10.1007/s00028-007-0377-9
[2] F. Andreu, J. M. Mazon, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl. (9) 90 (2008), 201–227. · Zbl 1165.35322 · doi:10.1016/j.matpur.2008.04.003
[3] F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo. The limit as p in a nonlocal p-Laplacian evolution equation. A nonlocal approximation of a model for sandpiles, Calc. Var. Partial Differential Equations 35 (2009), 279–316. · Zbl 1173.35022 · doi:10.1007/s00526-008-0205-2
[4] F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal. 40 (2009), 1815–1851. · Zbl 1183.35034 · doi:10.1137/080720991
[5] F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, Nonlocal Diffusion Problems, Amer. Math. Soc., Providence RI; Real Sociedad Mathemática Española, Madrid, 2010.
[6] G. Bachman and L. Narici, Functional Analysis, Dover, New York, 2000. · Zbl 0983.46001
[7] P. Bates, X. Chen, and A. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var. Partial Differential Equations 24 (2005), 261–281. · Zbl 1086.49008 · doi:10.1007/s00526-005-0308-y
[8] P. Bates, P. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138 (1997), 105–136. · Zbl 0889.45012 · doi:10.1007/s002050050037
[9] E. Chasseigne, M. Chaves, and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. 86 (2006), 271–291. · Zbl 1126.35081 · doi:10.1016/j.matpur.2006.04.005
[10] A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: existence and stability, J. Differential Equations 155 (1999), 17–43. · Zbl 0934.45005 · doi:10.1006/jdeq.1998.3571
[11] C. Cortázar, J. Coville, M. Elgueta, and S. Martínez, A non local inhomogeneous dispersal process, J. Differential Equations 241 (2007), 332–358. · Zbl 1127.45003 · doi:10.1016/j.jde.2007.06.002
[12] C. Cortázar, M. Elgueta, and J. D. Rossi, A nonlocal diffusion equation whose solutions develop a free boundary, Ann. Henri Poincaré 6 (2005), 269–281. · Zbl 1067.35136 · doi:10.1007/s00023-005-0206-z
[13] C. Cortázar, M. Elgueta, J. D. Rossi, and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations 234 (2007), 360–390. · Zbl 1113.35101 · doi:10.1016/j.jde.2006.12.002
[14] C. Cortázar, M. Elgueta, J. D. Rossi, and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal. 187 (2008), 137–156. · Zbl 1145.35060 · doi:10.1007/s00205-007-0062-8
[15] J. Coville, On uniqueness and monotonicity of solutions on non-local reaction diffusion equations, Ann. Mat. Pura Appl. (4) 185 (2006), 461–485. · Zbl 1232.35084 · doi:10.1007/s10231-005-0163-7
[16] J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations 249 (2010), 2921–2953. · Zbl 1218.45002 · doi:10.1016/j.jde.2010.07.003
[17] J. Coville and L. Dupaigne, On a nonlocal equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sec. A 137 (2007), 1–29. · Zbl 1133.35056 · doi:10.1017/S0308210504000721
[18] Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector calculus, non-local volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl, Sci. 23 (2013), 493–540. · Zbl 1266.26020 · doi:10.1142/S0218202512500546
[19] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer-Verlag, Berlin, 2003, pp. 153–191 · Zbl 1072.35005
[20] J. García-Melián and J. D. Rossi, Maximum and antimaximum principles for some nonlocal diffusion operators, Nonlinear Anal. 71 (2009), 6116–6121. · Zbl 1185.45005 · doi:10.1016/j.na.2009.06.004
[21] J. García-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations 246 (2009), 21–38. · Zbl 1162.35055 · doi:10.1016/j.jde.2008.04.015
[22] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. · Zbl 1042.35002
[23] V. Hutson, S. Martínez, K. Mischaikow, and G. T. Vickers, The evolution of dispersal, J. Math. Biol. 47 (2003), 483–517. · Zbl 1052.92042 · doi:10.1007/s00285-003-0210-1
[24] L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal. 251 (2007), 399–437. · Zbl 1149.35009 · doi:10.1016/j.jfa.2007.07.013
[25] L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pures Appl. (9) 92 (2009), 163–187. · Zbl 1173.35363 · doi:10.1016/j.matpur.2009.04.009
[26] L. I. Ignat, J. D. Rossi, and A. San Antolin, Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space, J. Differential Equations 252 (2012), 6429–6447. · Zbl 1239.35104 · doi:10.1016/j.jde.2012.03.011
[27] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. 10 (1962), 199–325.
[28] M. L. Parks, R. B. Lehoucq, S. Plimpton, and S. Silling, Implementing peridynamics within a molecular dynamics code, Comput. Physics Comm. 179 (2008), 777–783. · Zbl 1197.82014 · doi:10.1016/j.cpc.2008.06.011
[29] W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations 249 (2010), 747–795. · Zbl 1196.45002 · doi:10.1016/j.jde.2010.04.012
[30] S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48 (2000), 175–209. · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[31] S. A. Silling and R. B. Lehoucq, Convergence of peridynamics to classical elasticity theory, J. Elasticity 93 (2008), 13–37. · Zbl 1159.74316 · doi:10.1007/s10659-008-9163-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.