×

Homoclinic solutions to an integral equation: Existence and stability. (English) Zbl 0934.45005

The authors study (stationary) evolution equation in the form of the following nonlinear convolution type integral equation \[ (J\ast u)(x)- u(x)-f[u(x)]=0,\tag{1} \] with the condition \(u(\pm \infty)=0.\) It is assumed, that \(J(z)\geq 0\), \(\int J(z) dz =1\) and \(f\) is bistable. They construct homoclinic (even) solutions to the equation (1).

MSC:

45G05 Singular nonlinear integral equations
45M10 Stability theory for integral equations
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press San Diego · Zbl 0186.19101
[2] Bates, P. W.; Fife, P. C.; Ren, X.; Wang, X., Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138, 105-136 (1997) · Zbl 0889.45012
[3] P. W. Bates, and, A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, J. Statist. Phys, to appear.; P. W. Bates, and, A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, J. Statist. Phys, to appear. · Zbl 0958.82015
[4] P. W. Bates, and, A. Chmaj, On a discrete convolution model for phase transitions, Arch. Rational Mech. Anal, to appear.; P. W. Bates, and, A. Chmaj, On a discrete convolution model for phase transitions, Arch. Rational Mech. Anal, to appear. · Zbl 0956.74037
[5] Brandon, D.; Rogers, R. C., Nonlocal regularization of L. C. Young’s tacking problem, Appl. Math. Optim., 25, 287-301 (1992) · Zbl 0769.49016
[6] Brandon, D.; Rogers, R. C., Nonlocal superconductivity, Z. Angew. Math. Phys., 45, 135-152 (1994) · Zbl 0798.49011
[7] Brandon, D.; Lin, T.; Rogers, R. C., Phase transitions and hysteresis in nonlocal and order-parameter models, Meccanica, 30, 541-565 (1995) · Zbl 0835.73005
[8] Chen, X., Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Diff. Eq., 2, 125-160 (1997) · Zbl 1023.35513
[9] A. Chmaj, and, X, in preparation.; A. Chmaj, and, X, in preparation.
[10] de Masi, A.; Gobron, T.; Presutti, E., Traveling fronts in nonlocal evolution equations, Arch. Rational Mech. Anal., 132, 143-205 (1995) · Zbl 0847.45008
[11] de Masi, A.; Orlandi, E.; Presutti, E.; Triolo, L., Motion by curvature by scaling nonlocal evolution equations, J. Statist. Phys., 73, 543-570 (1993) · Zbl 1102.82323
[12] de Masi, A.; Orlandi, E.; Presutti, E.; Triolo, L., Stability of the interface in a model of phase separation, Proc. Roy. Soc. Edinburgh Sect. A, 124, 1013-1022 (1994) · Zbl 0819.45005
[13] de Masi, A.; Orlandi, E.; Presutti, E.; Triolo, L., Uniqueness of the instanton profile and global stability in nonlocal evolution equations, Rend. Mat., 14, 693-723 (1994) · Zbl 0821.45003
[14] Ermentrout, G. B.; McLeod, J. B., Existence and uniqueness of traveling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123, 461-478 (1993) · Zbl 0797.35072
[15] Fife, P. C.; Wang, X., A convolution model for interfacial motion: The generation and propagation of internal layers in higher space dimensions, Adv. Diff. Eq., 3, 85-110 (1998) · Zbl 0954.35087
[16] Fosdick, R. L.; Mason, D. E., Nonlocal continuum mechanics. Part I. Existence and regularity, SIAM J. Appl. Math., 58, 1278-1306 (1998) · Zbl 0923.73003
[17] Fosdick, R. L.; Mason, D. E., Nonlocal continuum mechanics. Part II. Structure, asymtotics and computations, J. Elasticity, 1-50 (1997)
[18] Katsoulakis, M.; Souganidis, P. E., Interacting particle systems and generalized mean curvature evolution, Arch. Rational Mech. Anal., 127, 133-157 (1994) · Zbl 0808.76002
[19] Katsoulakis, M.; Souganidis, P. E., Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics, Comm. Math. Phys., 169, 61-97 (1995) · Zbl 0821.60095
[20] M. Katsoulakis, and, P. E. Souganidis, Generalized front propagation and macroscopic limits of stochastic Ising models with long range anisotropic spin-flip dynamics, preprint.; M. Katsoulakis, and, P. E. Souganidis, Generalized front propagation and macroscopic limits of stochastic Ising models with long range anisotropic spin-flip dynamics, preprint. · Zbl 0937.82034
[21] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0676.58017
[22] Penrose, O., A mean-field equation of motion for the dynamic Ising model, J. Statist. Phys., 63, 975-986 (1991)
[23] Riesz, F., Sur une inégalité intégrale, J. London Math. Soc., 5, 162-168 (1930) · JFM 56.0232.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.