×

A decentralized fuzzy inference method for solving the two-dimensional steady inverse heat conduction problem of estimating boundary condition. (English) Zbl 1217.80124

Summary: This paper addresses a new technique for solving the two-dimensional steady inverse heat conduction problem, which named decentralized fuzzy inference (DFI) method. First of all, a group of decentralized fuzzy inference units are designed, and the fuzzy inference for each fuzzy inference unit is conducted which bases on the difference between the measured and the computed temperature at each measuring location. The computed temperatures are obtained by solving the direct heat conduction problem with the finite difference method. And then, inference results of fuzzy inference units are weighted to yield compensation values of the unknown boundary temperatures. The unknown boundary temperatures are estimated by updating guess temperatures continuously with compensation values. Numerical experiments are carried out with different initial guesses, the number of measuring points and measurement errors. Comparing results of DFI method and Levenberg-Marquardt (L-M) method, we can conclude that DFI method is valid.

MSC:

80A23 Inverse problems in thermodynamics and heat transfer
80M20 Finite difference methods applied to problems in thermodynamics and heat transfer
80M25 Other numerical methods (thermodynamics) (MSC2010)
Full Text: DOI

References:

[1] Duda, P.; Taler, J.: A new method for identification of thermal boundary conditions in water-wall tubes of boiler furnaces, Int. J. Heat mass transfer 52, 517-1524 (2009) · Zbl 1157.80391 · doi:10.1016/j.ijheatmasstransfer.2008.08.013
[2] Su, C. R.; Chen, C. K.: Geometry estimation of the furnace inner wall by an inverse approach, Int. J. Heat mass transfer 50, 3767-3773 (2007) · Zbl 1125.80325 · doi:10.1016/j.ijheatmasstransfer.2007.02.024
[3] Narasimhan, A.; Karra, S.: An inverse heat transfer method to provide near-isothermal surface for disc heaters used in microlithography, Int. J. Heat mass transfer 49, 4624-4632 (2006) · Zbl 1113.80326 · doi:10.1016/j.ijheatmasstransfer.2006.04.019
[4] Chen, T. C.; Liu, C. C.: Inverse estimation of heat flux and temperature on nozzle throat-insert inner contour, Int. J. Heat mass transfer 51, 571-3581 (2008) · Zbl 1148.80369 · doi:10.1016/j.ijheatmasstransfer.2007.10.029
[5] Tadrari, O.; Lacroix, M.: Prediction of protective banks in high temperature smelting furnaces by inverse heat transfer, Int. J. Heat mass transfer 49, 2180-2189 (2006) · Zbl 1189.80039 · doi:10.1016/j.ijheatmasstransfer.2005.11.023
[6] Chen, T. C.; Liu, C. C.; Jang, H. Y.; Tuan, P. C.: Inverse estimation of heat flux and temperature in multi-layer gun barrel, Int. J. Heat mass transfer 50, 2060-2068 (2007) · Zbl 1124.80396 · doi:10.1016/j.ijheatmasstransfer.2006.11.022
[7] Alifanov, O. M.: Inverse heat transfer problems, (1994) · Zbl 0979.80003
[8] Lin, David T. W.; Yang, C. Y.: The estimation of the strength of the heat source in the heat conduction problems, Int. J. Heat mass transfer 31, No. 12, 2696-2710 (2007) · Zbl 1141.80010 · doi:10.1016/j.apm.2006.10.022
[9] Sawaf, B.; Ozisik, M. N.: Determining the constant thermal conductivities of orthotropic materials by inverse analysis, Int. J. Heat mass transfer 22, No. 2, 201-211 (1995)
[10] Park, H. M.; Yoon, T. Y.: Solution of the inverse radiation problem using a conjugate gradient method, Int. J. Heat mass transfer 43, 1767-1776 (2000) · Zbl 0964.80010 · doi:10.1016/S0017-9310(99)00255-0
[11] Rouquette, S.; Guo, J.; Masson, P. Le.: Estimation of the parameters of a Gaussian heat source by the Levenberg – Marquardt method: application to the electron beam welding, Int. J. Therm. sci. 46, No. 2, 128-138 (2007)
[12] Huang, C. H.; Huang, C. Y.: An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue, Appl. math. Model. 31, No. 9, 1785-1797 (2007) · Zbl 1167.80400 · doi:10.1016/j.apm.2006.06.002
[13] Huang, C. H.; Chaing, M. T.: A transient three-dimensional inverse geometry problem in estimating the space and time-dependent irregular boundary shapes, Int. J. Heat mass transfer 51, 5238-5246 (2008) · Zbl 1154.80367 · doi:10.1016/j.ijheatmasstransfer.2008.03.019
[14] Huang, C. H.; Wu, H. H.: An iterative regularization method in estimating the base temperature foe non-Fourier fins, Int. J. Therm. sci. 49, 128-138 (2007)
[15] Chen, P. F.; Huang, C. H.: An inverse hull design approach in minimizing the ship wave, Ocean eng. 31, No. 13, 1683-1712 (2004)
[16] Huang, C. H.; Shih, C. C.: A shape identification problem in estimating simultaneously two interfacial configurations in a multiple region domain, Appl. therm. Eng. 26, No. 1, 77-78 (2006)
[17] Huang, C. H.; Chao, B. H.: An inverse geometry problem in identifying irregular boundary configurations, Int. J. Heat mass transfer 40, No. 9, 2045-2053 (1997) · Zbl 0933.74500 · doi:10.1016/S0017-9310(96)00280-3
[18] Lee, K. H.; Baek, S. W.; Kim, K. W.: Inverse radiation analysis using repulsive particle swarm optimization algorithm, Int. J. Heat mass transfer 51, 2772-2783 (2008) · Zbl 1144.80373 · doi:10.1016/j.ijheatmasstransfer.2007.09.037
[19] Deng, S.; Wang, Y. H.: Applying neural networks to the solution of forward and inverse heat conduction problems, Int. J. Heat mass transfer 49, 4732-4750 (2006) · Zbl 1110.80002 · doi:10.1016/j.ijheatmasstransfer.2006.06.009
[20] Liu, F. B.: A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source, Int. J. Heat mass transfer 51, 3745-3752 (2008) · Zbl 1148.80371 · doi:10.1016/j.ijheatmasstransfer.2008.01.002
[21] Holman, J. P.: Heat transfer, (2002)
[22] Gupta, M. M.; Kiszka, J. B.; Trojan, G. M.: Multivariable structure of fuzzy control systems, IEEE trans. Syst. man cybernet. 16, No. 5, 638-656 (1986) · Zbl 0619.93044 · doi:10.1109/TSMC.1986.289309
[23] Ross, Timothy J.: Fuzzy logic with engineering applications, (2004) · Zbl 1060.93007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.