×

Inverse radiation analysis using repulsive particle swarm optimization algorithm. (English) Zbl 1144.80373

Summary: An inverse radiation analysis is presented for the estimation of the radiation properties for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. The repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, is proposed as an effective method for improving the search efficiency for unknown radiative parameters. To verify the performance of the RPSO algorithm, it is compared with a basic particle swarm optimization (PSO) algorithm and a hybrid genetic algorithm (HGA) for the inverse radiation problem in estimating the various radiation properties in a two-dimensional irregular medium, when the temperatures are given at only four measurement positions. A finite-volume method is applied to solve the radiative transfer equation of a direct problem to obtain measured temperatures. RPSO is proven to be quite a robust tool for simultaneous estimation of multi-parameters even in a strongly-coupled environment.

MSC:

80A23 Inverse problems in thermodynamics and heat transfer
78A40 Waves and radiation in optics and electromagnetic theory
80M50 Optimization problems in thermodynamics and heat transfer
90C59 Approximation methods and heuristics in mathematical programming

Software:

Genocop
Full Text: DOI

References:

[1] Özisik, M. N.; Orlande, H. R. B.: Inverse heat transfer, (2000)
[2] Liu, L. H.; Tan, H. P.; Yu, Q. Z.: Simultaneous identification of temperature profile and wall emissivities in semitransparent medium by inverse radiation analysis, Numer. heat transfer, part A 36, 511-525 (1999)
[3] Hong, Y. K.; Baek, S. W.: Inverse radiation problem in determination of the inlet temperature profile for two-phase laminar flow in a channel, Numer. heat transfer, part A 50, 1-19 (2006)
[4] Ou, N. R.; Wu, C. H.: Simultaneous estimation of extinction coefficient distribution, scattering albedo and phase function of a two-dimensional medium, Int. J. Heat mass transfer 45, 4663-4674 (2002) · Zbl 1040.78506 · doi:10.1016/S0017-9310(02)00168-0
[5] Huang, C. H.; Özisik, M. N.: Inverse problem of determining unknown wall heat in laminar flow through a parallel plate, Numer. heat transfer, part A 21, 55-70 (1992)
[6] Bokar, J. C.; Özisik, M. N.: Inverse analysis for estimating the time varying inlet temperature in laminar flow inside a parallel plate duct, Int. J. Heat mass transfer 38, 39-45 (1995) · Zbl 0923.76290 · doi:10.1016/0017-9310(94)00146-M
[7] Hong, Y. K.; Baek, S. W.: Inverse analysis for estimating the unsteady inlet temperature distribution for two-phase laminar flow in a channel, Int. J. Heat mass transfer 49, 1137-1147 (2006) · Zbl 1189.76632 · doi:10.1016/j.ijheatmasstransfer.2005.07.051
[8] Kim, K. W.; Baek, S. W.; Ryu, H. S.: Comparison of optimization techniques for an inverse radiation boundary problem, Int. conf. Comput. methods, 15-17 (2004)
[9] Li, H. Y.; Yang, C. Y.: A genetic algorithm for inverse radiation problems, Int. J. Heat mass transfer 40, 1545-1549 (1997) · Zbl 0916.65138 · doi:10.1016/S0017-9310(96)00233-5
[10] Kim, K. W.; Baek, S. W.; Kim, M. Y.; Ryu, H. S.: Estimation of emissivities in a two-dimensional irregular geometry by inverse radiation analysis using hybrid genetic algorithm, J. quant. Spectrosc. radiat. 87, 1-14 (2004)
[11] Becceneri, J. C.; Stephany, S.; De Campos Velho, H. F.; Neto, A. J. Silva: Solution of the inverse problem of radiative properties estimation with particle swarm optimization techniques, Inverse probl. Eng. seminar (IPES) (2006)
[12] Michalewicz, Z.: Genetic algorithms+Data structures=Evolution programs, (1999) · Zbl 0818.68017
[13] Joachim, S.: Parallel genetic algorithms: theory and applications, (1993) · Zbl 0853.68004
[14] Man, K. F.; Tang, K. S.; Kwong, S.: Genetic algorithms: concepts and designs, (1999) · Zbl 0926.68113
[15] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942 – 1945.
[16] Eberhart, R. C.; Simpson, P.; Dobbins, R.: Computational intelligence PC tools, (1996)
[17] Clerc, M.: Particle swarm optimization, (2006) · Zbl 1130.90059
[18] E. Ozcan, C. Mohan, Particle swarm optimization: surfing the waves, in: Proceedings of the Congress on Evolutionary Computation, 1999, pp. 1939 – 1944.
[19] James, K.; Russell, C. E.; Yuhui, S.: Swarm intelligence, (2001)
[20] Urfalioglu, O.: Robust estimation of camera rotation, translation and focal length at high outlier rates, Comput. robot vis. Proc., 464-471 (2004)
[21] Liu, J.; Shang, H. M.; Chen, Y. S.; Wang, T. S.: Prediction of radiative transfer in general body-fitted coordinates, Numer. heat transfer, part B 31, 423-439 (1997)
[22] Baek, S. W.; Kim, M. Y.; Kim, J. S.: Nonorthogonal finite-volume solutions of radiative heat transfer in a three-dimensional enclosure, Numer. heat transfer, part B 34, 419-437 (1998)
[23] Clerc, M.; Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE trans. Evol. comput. 6, 58-73 (2002)
[24] Park, H. M.; Yoon, T. Y.: Solution of the inverse radiation problem using a conjugate gradient method, Int. J. Heat mass transfer 43, 1767-1776 (2000) · Zbl 0964.80010 · doi:10.1016/S0017-9310(99)00255-0
[25] Verma, S.; Balaji, C.: Multi-parameter estimation in combined conduction – radiation from a plane parallel participating medium using genetic algorithms, Int. J. Heat mass transfer 50, 1706-1714 (2007) · Zbl 1124.80373 · doi:10.1016/j.ijheatmasstransfer.2006.10.045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.