×

Finite normal mixture copulas for multivariate discrete data modeling. (English) Zbl 1169.62044

Summary: A new family of copulas is introduced that provides a flexible dependence structure while being tractable and simple to use for multivariate discrete data modeling. The construction exploits finite mixtures of uncorrelated normal distributions. Accordingly, the cumulative distribution function is simply the product of univariate normal distributions. At the same time, however, the mixing operation introduces association. The properties of the new family of copulas are examined and a concrete application is used to show its applicability.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62H10 Multivariate distribution of statistics
62H20 Measures of association (correlation, canonical correlation, etc.)
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

AS 195; QRM; QSIMVN
Full Text: DOI

References:

[1] Aas, K.; Czado, C.; Frigessi, A.; Bakken, H., Pair-copula constructions of multiple dependence, Insurance Math. Econom., 44, 2, 182-198 (2009) · Zbl 1165.60009
[2] Abdous, B.; Genest, C.; Rémillard, B., Dependence properties of meta-elliptical distributions, (Duchesne, P.; Rémillard, B., Statistical Modelling and Analysis for Complex Data Problems (2005), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, The Netherlands), 1-15 · Zbl 1071.62500
[3] Aitchinson, J.; Ho, C., The multivariate Poisson-log normal distribution, Biometrika, 75, 621-629 (1989)
[4] Bedford, T.; Cooke, R. M., Vines—a new graphical model for dependent random variables, Ann. Statist., 30, 1031-1068 (2002) · Zbl 1101.62339
[5] Berkhout, P.; Plug, E., A bivariate Poisson count data model using conditional probabilities, Statist. Neerlandica, 58, 349-364 (2004) · Zbl 1059.62011
[6] Bernsten, J.; Espelid, T.; Genz, A., Algorithm 698: DCUHRE—an adaptive multidimensional integration routine for a vector of integrals, ACM Trans. Math. Software, 17, 452-456 (1991) · Zbl 0900.65053
[7] Bohning, D., Computer Assisted Analysis of Mixtures & Applications in Meta- Analysis CC Disease Mapping & Others (2000), CRC Press: CRC Press New York · Zbl 0951.62088
[8] Cameron, A. C.; Li, T.; Trivedi, P. K.; Zimmer, D. M., Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts, Econom. J., 7, 2, 566-584 (2004) · Zbl 1115.62329
[9] Chib, S.; Winkelmann, R., Markov chain Monte Carlo analysis of correlated count data, J. Bus. Econom. Statist., 19, 4, 428-435 (2001)
[10] Denuit, M.; Lambert, P., Constraints on concordance measures in bivariate discrete data, J. Multivariate Anal., 93, 1, 40-57 (2005) · Zbl 1095.62065
[11] Fang, H.-B.; Fang, K.-T.; Kotz, S., The meta-elliptical distributions with given marginals, J. Multivariate Anal., 82, 1-16 (2002) · Zbl 1002.62016
[12] Genest, C., Favre, A.-C., Béliveau, J., Jacques, C., 2007. Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resource Res. 43, W09401 doi:10.1029/2006WR005275, p. 12.; Genest, C., Favre, A.-C., Béliveau, J., Jacques, C., 2007. Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resource Res. 43, W09401 doi:10.1029/2006WR005275, p. 12.
[13] Genest, C.; Marceau, E.; Mesfioui, M., Compound Poisson approximations for individual models with dependent risks, Insurance Math. Econom., 32, 73-91 (2003) · Zbl 1055.91050
[14] Genest, C.; Nešlehová, J., A primer on copulas for count data, Astin Bull., 37, 475-515 (2007) · Zbl 1274.62398
[15] Genz, A., Numerical computation of the multivariate normal probabilities, J. Comput. Graph. Statist., 1, 141-150 (1992)
[16] Genz, A.; Bretz, F., Methods for the computation of the multivariate \(t\)-probabilities, J. Comput. Graph. Statist., 11, 950-971 (2002)
[17] Goodman, L.; Kruskal, W., Measures of association for cross classifications, J. Amer. Statist. Assoc., 49, 732-764 (1954) · Zbl 0056.12801
[18] Joe, H., Parametric families of multivariate distributions with given margins, J. Multivariate Anal., 46, 262-282 (1993) · Zbl 0778.62045
[19] Joe, H., Approximations to multivariate normal rectangle probabilities based on conditional expectations, J. Amer. Statist. Assoc., 90, 431, 957-964 (1995) · Zbl 0843.62016
[20] Joe, H., Multivariate Models and Dependence Concepts (1997), Chapman & Hall: Chapman & Hall London · Zbl 0990.62517
[21] Joe, H., Asymptotic efficiency of the two-stage estimation method for copula-based models, J. Multivariate Anal., 94, 2, 401-419 (2005) · Zbl 1066.62061
[22] Joe, H.; Hu, T., Multivariate distributions from mixtures of max-infinitely divisible distributions, J. Multivariate Anal., 57, 2, 240-265 (1996) · Zbl 0863.62047
[23] Karlis, D.; Meligkotsidou, L., Finite multivariate Poisson mixtures with applications, J. Statist. Plann. Inference, 137, 1942-1960 (2007) · Zbl 1116.60006
[24] Karlis, D.; Xekalaki, E., Mixed Poisson distributions, Int. Stat. Rev., 73, 35-58 (2005) · Zbl 1104.62010
[25] Kendall, M., The treatment of ties in rank problems, Biometrika, 33, 239-251 (1945) · Zbl 0063.03216
[26] Lee, A., Modelling rugby league data via bivariate negative binomial regression, Aust. N. Z. J. Stat., 41, 2, 141-152 (1999) · Zbl 0946.62101
[27] McLachlan, G.; Peel, D., Discrete Multivariate Distributions (2000), Wiley: Wiley New York
[28] McNeil, A. J., Sampling nested Archimedean copulas, J. Stat. Comput. Simul., 78, 6, 567-581 (2008) · Zbl 1221.00061
[29] McNeil, A. J.; Frey, R.; Embrechts, P., Quantitative Risk Management: Concepts, Techniques and Tools (2005), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1089.91037
[30] McNeil, A.J., Nešlehová, J., 2009. Multivariate Archimedean copulas, \(d\)-monotone functions and \(l_1\)-norm symmetric distributions. Ann. Statist. 37, in press.; McNeil, A.J., Nešlehová, J., 2009. Multivariate Archimedean copulas, \(d\)-monotone functions and \(l_1\)-norm symmetric distributions. Ann. Statist. 37, in press. · Zbl 1173.62044
[31] Meester, S.; MacKay, J., A parametric model for cluster correlated categorical data, Biometrics, 50, 954-963 (1994) · Zbl 0825.62788
[32] Mesfioui, M.; Tajar, A., On the properties of some nonparametric concordance measures in the discrete case, J. Nonparametr. Stat., 17, 5, 541-554 (2005) · Zbl 1135.60303
[33] Nelsen, R. B., An Introduction to Copulas (2006), Springer: Springer New York · Zbl 1152.62030
[34] Nešlehová, J., On rank correlation measures for non-continuous random variables, J. Multivariate Anal., 98, 544-567 (2007) · Zbl 1107.62047
[35] Nikoloulopoulos, A.K., 2007. Application of copula functions in statistics. Ph.D. Thesis, Department of Statistics, Athens University of Economics.; Nikoloulopoulos, A.K., 2007. Application of copula functions in statistics. Ph.D. Thesis, Department of Statistics, Athens University of Economics.
[36] Pfeifer, D.; Nešlehová, J., Modeling and generating dependent risk processes for IRM and DFA, Astin Bull., 34, 333-360 (2004) · Zbl 1159.91410
[37] Schervish, M., Algorithm AS 195 multivariate normal probabilities with error bound, J. Appl. Stat., 33, 81-94 (1984) · Zbl 0547.65097
[38] Shih, J. H., Modelling multivariate discrete failure time data, Biometrics, 54, 1115-1128 (1998) · Zbl 1058.62562
[39] Trégouët, D. A.; Ducimetière, P.; Bocquet, V.; Visvikis, S.; Soubrier, F.; Tiret, L., A parametric copula model for analysis of familial binary data, Amer. J. Hum. Genet., 64, 3, 886-893 (1999)
[40] Zhao, Y.; Joe, H., Composite likelihood estimation in multivariate data analysis, Canad. J. Statist., 33, 3, 335-356 (2005) · Zbl 1077.62045
[41] Zimmer, D.; Trivedi, P., Using trivariate copulas to model sample selection and treatment effects: application to family health care demand, J. Bus. Econom. Statist., 24, 1, 63-76 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.