×

Structure preserving schemes for Fokker-Planck equations of irreversible processes. (English) Zbl 1530.65087

Summary: In this paper, we construct structure preserving schemes for solving Fokker-Planck equations associated with irreversible processes. The proposed method is first order in time. We consider two structure-preserving spatial discretizations, which are second order and fourth order accurate finite difference schemes. They are derived via finite difference implementation of the classical \(Q^k\) (\(k=1,2\)) finite element methods on uniform meshes. Under mild mesh conditions and practical time step constraints, the schemes are proved monotone, thus are positivity-preserving and energy dissipative. In particular, our scheme is suitable for capturing steady state solutions in large final time simulations.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q84 Fokker-Planck equations

References:

[1] Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On Convex Sobolev Inequalities and the Rate of Convergence to Equilibrium for Fokker-Planck Type Equations (2001) · Zbl 0982.35113
[2] Bank, RE; Coughran, WM Jr; Cowsar, LC, The finite volume Scharfetter-Gummel method for steady convection-diffusion equations, Comput. Vis. Sci., 1, 3, 123-136 (1998) · Zbl 0912.68084 · doi:10.1007/s007910050012
[3] Bessemoulin-Chatard, M., A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme, Numerische Mathematik, 121, 4, 637-670 (2012) · Zbl 1271.65124 · doi:10.1007/s00211-012-0448-x
[4] Bodineau, T.; Lebowitz, J.; Mouhot, C.; Villani, C., Lyapunov functionals for boundary-driven nonlinear drift-diffusion equations, Nonlinearity, 27, 9, 2111 (2014) · Zbl 1301.58017 · doi:10.1088/0951-7715/27/9/2111
[5] Cattiaux, P., Stochastic calculus and degenerate boundary value problems, Annales de l’institut Fourier, 42, 3, 541-624 (1992) · Zbl 0780.35023 · doi:10.5802/aif.1302
[6] Chainais-Hillairet, C.; Herda, M., Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations, IMA J. Numer. Anal., 40, 4, 2473-2504 (2020) · Zbl 1467.65088 · doi:10.1093/imanum/drz037
[7] Chainais-Hillairet, C.; Liu, J-G; Peng, Y-J, Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis, ESAIM Math. Model. Numer. Anal.-Modélisation Mathématique et Analyse Numérique, 37, 2, 319-338 (2003) · Zbl 1032.82038 · doi:10.1051/m2an:2003028
[8] Chen, M-F, Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains, Stoch. Process. Appl., 87, 2, 281-297 (2000) · Zbl 1045.60078 · doi:10.1016/S0304-4149(99)00114-3
[9] Delarue, F.; Lagoutiére, F., Probabilistic analysis of the upwind scheme for transport equations, Arch. Ration. Mech. Anal., 199, 1, 229-268 (2011) · Zbl 1230.65008 · doi:10.1007/s00205-010-0322-x
[10] Duncan, AB; Lelievre, T.; Pavliotis, GA, Variance reduction using non reversible Langevin samplers, J. Stat. Phys., 163, 3, 457-491 (2016) · Zbl 1343.82036 · doi:10.1007/s10955-016-1491-2
[11] E, W., Vanden-Eijnden, E.: Towards a theory of transition paths. J. Stat. Phys. 123(3), 503 (2006) · Zbl 1101.82016
[12] Filbet, F.; Herda, M., A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure, Numerische Mathematik, 137, 3, 535-577 (2017) · Zbl 1381.65072 · doi:10.1007/s00211-017-0885-7
[13] Gao, Y.; Li, T.; Li, X.; Liu, J-G, Transition path theory for Langevin dynamics on manifold: optimal control and data-driven solver, Multiscale Model. Simul., 21, 1, 1-33 (2023) · Zbl 1517.60087 · doi:10.1137/21M1437883
[14] Gao, Y.; Liu, J-G, A note on parametric Bayesian inference via gradient flows, Ann. Math. Sci. Appl., 5, 2, 261-282 (2020) · Zbl 1465.76075 · doi:10.4310/AMSA.2020.v5.n2.a3
[15] Gao, Y.; Liu, J-G, Random walk approximation for irreversible drift-diffusion process on manifold: ergodicity, unconditional stability and convergence, Commun. Comput. Phys., 6, 66 (2023) · Zbl 07738849
[16] Gao, Y.; Liu, J-G, Revisit of macroscopic dynamics for some non-equilibrium chemical reactions from a Hamiltonian viewpoint, J. Stat. Phys., 189, 2, 22 (2022) · Zbl 1498.80011 · doi:10.1007/s10955-022-02985-5
[17] Gao, Y.; Liu, J-G; Wu, N., Data-driven efficient solvers for Langevin dynamics on manifold in high dimensions, Appl. Comput. Harmon. Anal., 62, 261-309 (2023) · Zbl 1509.82098 · doi:10.1016/j.acha.2022.09.003
[18] Hill, TL, Free Energy Transduction and Biochemical Cycle Kinetics (2005), New York: Dover Publications, New York
[19] Hu, J.; Zhang, X., Positivity-preserving and energy-dissipative finite difference schemes for the Fokker-Planck and Keller-Segel equations, IMA J. Numer. Anal., 6, 66 (2022)
[20] Li, H.; Appelö, D.; Zhang, X., Accuracy of spectral element method for wave, parabolic, and Schrödinger equations, SIAM J. Numer. Anal., 60, 1, 339-363 (2022) · Zbl 1525.65094 · doi:10.1137/21M1401760
[21] Li, H.; Zhang, X., On the monotonicity and discrete maximum principle of the finite difference implementation of C0-Q2 finite element method, Numerische Mathematik, 145, 2, 437-472 (2020) · Zbl 1451.65200 · doi:10.1007/s00211-020-01110-6
[22] Li, H.; Zhang, X., Superconvergence of high order finite difference schemes based on variational formulation for elliptic equations, J. Sci. Comput., 82, 2, 1-39 (2020) · Zbl 1434.65267 · doi:10.1007/s10915-019-01102-1
[23] Li, L.; Liu, J-G, Large time behaviors of upwind schemes and B-schemes for Fokker-Planck equations on R by jump processes, Math. Comput., 89, 325, 2283-2320 (2020) · Zbl 1442.65214 · doi:10.1090/mcom/3516
[24] Li, T.; Li, X.; Zhou, X., Finding transition pathways on manifolds, Multiscale Model. Simul., 14, 1, 173-206 (2016) · Zbl 1381.60102 · doi:10.1137/140957780
[25] Li, T.; Lin, F., Large deviations for two-scale chemical kinetic processes, Commun. Math. Sci., 15, 1, 123-163 (2017) · Zbl 1358.60048 · doi:10.4310/CMS.2017.v15.n1.a6
[26] Lorenz, J., Zur inversmonotonie diskreter probleme, Numerische Mathematik, 27, 2, 227-238 (1977) · Zbl 0325.65014 · doi:10.1007/BF01396643
[27] Maday, Y.; Ronquist, EM, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries, Comput. Methods Appl. Mech. Eng., 80, 1-3, 91-115 (1990) · Zbl 0728.65078 · doi:10.1016/0045-7825(90)90016-F
[28] Markowich, PA, The Stationary Semiconductor Device Equations (1985), Berlin: Springer, Berlin · Zbl 0556.65070
[29] Markowich, PA; Zlámal, MA, Inverse-average-type finite element discretizations of selfadjoint second-order elliptic problems, Math. Comput., 51, 184, 431-449 (1988) · Zbl 0699.65074 · doi:10.1090/S0025-5718-1988-0930223-7
[30] Plemmons, RJ, M-matrix characterizations. I-nonsingular M-matrices, Linear Algebra Appl., 18, 2, 175-188 (1977) · Zbl 0359.15005 · doi:10.1016/0024-3795(77)90073-8
[31] Prigogine, I., Introduction to Thermodynamics of Irreversible Processes (1968), New York: Wiley, New York · Zbl 0115.23101
[32] Qian, H., Ge, H.: Stochastic Chemical Reaction Systems in Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Berlin (2021). doi:10.1007/978-3-030-86252-7 · Zbl 1473.92002
[33] Scharfetter, DL; Gummel, HK, Large-signal analysis of a silicon read diode oscillator, IEEE Trans Electron Devices, 16, 1, 64-77 (1969) · doi:10.1109/T-ED.1969.16566
[34] Shen, J.; Zhang, X., Discrete maximum principle of a high order finite difference scheme for a generalized Allen-Cahn equation, Commun. Math. Sci., 20, 5, 1409-1436 (2022) · Zbl 1489.65124 · doi:10.4310/CMS.2022.v20.n5.a9
[35] Tao, M., Hyperbolic periodic orbits in nongradient systems and small-noise-induced metastable transitions, Phys. D Nonlinear Phenom., 363, 1-17 (2018) · Zbl 1375.60103 · doi:10.1016/j.physd.2017.10.001
[36] Turitsyn, KS; Chertkov, M.; Vucelja, M., Irreversible Monte Carlo algorithms for efficient sampling, Phys. D Nonlinear Phenom., 240, 4-5, 410-414 (2011) · Zbl 1216.82022 · doi:10.1016/j.physd.2010.10.003
[37] Wei, W.; Gao, T.; Chen, X.; Duan, J., An optimal control method to compute the most likely transition path for stochastic dynamical systems with jumps’, Chaos Interdiscip. J. Nonlinear Sci., 32, 5, 051102 (2022) · Zbl 1540.60157 · doi:10.1063/5.0093924
[38] Xu, J.; Zikatanov, L., A monotone finite element scheme for convection-diffusion equations, Math. Comput., 68, 228, 1429-1446 (1999) · Zbl 0931.65111 · doi:10.1090/S0025-5718-99-01148-5
[39] Ye, X.; Zhou, Z., Efficient sampling of thermal averages of interacting quantum particle systems with random batches, J. Chem. Phys., 154, 20 (2021) · doi:10.1063/5.0047437
[40] Zhang, L.; Wang, H.; Weinan, E., Reinforced dynamics for enhanced sampling in large atomic and molecular systems, J. Chem. Phys., 148, 124113 (2018) · doi:10.1063/1.5019675
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.