×

Transition path theory for Langevin dynamics on manifolds: optimal control and data-driven solver. (English) Zbl 1517.60087

Summary: We present a data-driven point of view for rare events, which represent conformational transitions in biochemical reactions modeled by overdamped Langevin dynamics on manifolds in high dimensions. We first reinterpret the transition state theory and the transition path theory from the optimal control viewpoint. Given a point cloud probing the manifold, we construct a discrete Markov chain with a \(Q\)-matrix computed from an approximated Voronoi tesselation via the point cloud. We use this \(Q\)-matrix to compute a discrete committor function whose level set automatically orders the point cloud. Then based on the committor function, an optimally controlled random walk on point clouds is constructed and utilized to efficiently sample transition paths, which become an almost sure event in \(O(1)\) time instead of a rare event in the original reaction dynamics. To compute the mean transition path efficiently, a local averaging algorithm based on the optimally controlled random walk is developed, which adapts the finite temperature string method to the controlled Monte Carlo samples. Numerical examples on sphere/torus including a conformational transition for the alanine dipeptide in vacuum are conducted to illustrate the data-driven solver for the transition path theory on point clouds. The mean transition path obtained via the controlled Monte Carlo simulations highly coincides with the computed dominant transition path in the transition path theory.

MSC:

60J22 Computational methods in Markov chains
65C05 Monte Carlo methods
60H30 Applications of stochastic analysis (to PDEs, etc.)
93E20 Optimal stochastic control

References:

[1] Apostolakis, J., Ferrara, P., and Caflisch, A., Calculation of conformational transitions and barriers in solvated systems: Application to the alanine dipeptide in water, J. Chem. Phys., 110 (1999), pp. 2099-2108.
[2] Banisch, R. and Hartmann, C., A sparse Markov chain approximation of LQ-type stochastic control problems, Math. Control. Relat. Fields, 6 (2016), pp. 363-389. · Zbl 1350.49031
[3] Bogachev, V., Krylov, N., Röckner, M., and Shaposhnikov, S., Fokker-Planck-Kolmogorov Equations, , AMS, Providence, RI, 2015. · Zbl 1342.35002
[4] Coifman, R. R. and Lafon, S., Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006), pp. 5-30. · Zbl 1095.68094
[5] Deuschel, J.-D. and Stroock, D. W., Large Deviations, AMS, Providence, RI, 2001.
[6] E, W., Ren, W., and Vanden-Eijnden, E., String method for the study of rare events, Phys. Rev. B, 66 (2002), 052301.
[7] E, W., Ren, W., and Vanden-Eijnden, E., Minimum action method for the study of rare events, Comm. Pure Appl. Math., 57 (2004), pp. 637-656. · Zbl 1050.60068
[8] E, W., Ren, W., and Vanden-Eijnden, E., Finite temperature string method for the study of rare events, J. Phys. Chem. B, 109 (2005), pp. 6688-6693.
[9] E, W. and Vanden-Eijnden, E., Towards a theory of transition paths, J. Stat. Phys., 123 (2006), pp. 503-523. · Zbl 1101.82016
[10] E, W. and Vanden-Eijnden, E., Transition-path theory and path-finding algorithms for the study of rare events, Ann. Rev. Phys. Chem., 61 (2010), pp. 391-420.
[11] Evans, L. C., An Introduction to Stochastic Differential Equations, AMS, Providence, RI, 2013. · Zbl 1416.60002
[12] Fleming, W. H. and Soner, H. M., Controlled Markov Processes and Viscosity Solutions, 2nd ed., Springer, New York, 2006. · Zbl 1105.60005
[13] Freidlin, M. I. and Wentzell, A. D., Random Perturbations of Dynamical Systems, , Springer, Berlin, Heidelberg, 2012. · Zbl 1267.60004
[14] Gao, Y. and Liu, J.-G., A note on parametric Bayesian inference via gradient flows, Ann. Math. Sci. Appl., 5 (2020), pp. 261-282, doi:10.4310/AMSA.2020.v5.n2.a3. · Zbl 1465.76075
[15] Gao, Y. and Liu, J.-G., Random Walk Approximation for Irreversible Drift-Diffusion Process on Manifold: Ergodicity, Unconditional Stability and Convergence, preprint, https://arxiv.org/abs/2106.01344, 2021.
[16] Gao, Y. and Liu, J.-G., Revisit of macroscopic dynamics for some non-equilibrium chemical reactions from a Hamiltonian viewpoint, J. Stat. Phys., 189 (2022), 22, doi:10.1007/s10955-022-02985-5. · Zbl 1498.80011
[17] Gao, Y. and Liu, J.-G., A Selection Principle for Weak Kam Solutions via Freidlin-Wentzell Large Deviation Principle of Invariant Measures, preprint, https://arxiv.org/abs/2208.11860, 2022.
[18] Gao, Y. and Liu, J.-G., Thermodynamic Limit of Chemical Master Equation via Nonlinear Semigroup, preprint, https://arxiv.org/abs/2205.09313, 2022.
[19] Gao, Y., Jin, G., and Liu, J.-G., Inbetweening auto-animation via Fokker-Planck dynamics and thresholding, Inverse Prob. Imaging, 15 (2021), pp. 843-864, doi:10.3934/ipi.2021016. · Zbl 1507.68331
[20] Gao, Y., Liu, J.-G., and Wu, N., Data-driven efficient solvers for Langevin dynamics on manifold in high dimensions, Appl. Comput. Harmon. Anal., 62 (2023), pp. 261-309, doi:10.1016/j.acha.2022.09.003. · Zbl 1509.82098
[21] Grafke, T. and Vanden-Eijnden, E., Non-equilibrium transitions in multiscale systems with a bifurcating slow manifold, J. Stat. Mech.: Theory Exp., 2017 (2017), 093208. · Zbl 1457.82298
[22] Grafke, T. and Vanden-Eijnden, E., Numerical computation of rare events via large deviation theory, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 063118. · Zbl 1416.65042
[23] Hartmann, C., Banisch, R., Sarich, M., Badowski, T., and Schütte, C., Characterization of rare events in molecular dynamics, Entropy, 16 (2013), pp. 350-376.
[24] Hartmann, C., Richter, L., Schütte, C., and Zhang, W., Variational characterization of free energy: Theory and algorithms, Entropy, 19 (2017), 626.
[25] Hartmann, C. and Schütte, C., Efficient rare event simulation by optimal nonequilibrium forcing, J. Stat. Mech.: Theory Exp., 2012 (2012), P11004.
[26] Hartmann, C., Schütte, C., and Zhang, W., Model reduction algorithms for optimal control and importance sampling of diffusions, Nonlinearity, 29 (2016), pp. 2298-2326. · Zbl 1347.65115
[27] Heymann, M. and Vanden-Eijnden, E., The geometric minimum action method: A least action principle on the space of curves, Comm. Pure Appl. Math., 61 (2008), pp. 1052-1117. · Zbl 1146.60046
[28] Khasminskii, R., Stochastic Stability of Differential Equations, Stoch. Model. Appl. Probab.66, Springer, Berlin, Heidelberg, 2012. · Zbl 1241.60002
[29] Lai, R. and Lu, J., Point cloud discretization of Fokker-Planck operators for committor functions, Multiscale Model. Simul., 16 (2018), pp. 710-726, doi:10.1137/17M1123018. · Zbl 1431.65235
[30] Li, T., Li, X., and Zhou, X., Finding transition pathways on manifolds, Multiscale Model. Simul., 14 (2016), pp. 173-206, doi:10.1137/140957780. · Zbl 1381.60102
[31] Liu, A., Liu, J.-G., and Lu, Y., On the rate of convergence of empirical measure in \(\infty \) -Wasserstein distance for unbounded density function, Quart. Appl. Math., 77 (2019), pp. 811-829. · Zbl 1447.60008
[32] Lu, J. and Nolen, J., Reactive trajectories and the transition path process, Probab. Theory Relat. Fields, 161 (2015), pp. 195-244. · Zbl 1343.60074
[33] Metzner, P., Schütte, C., and Vanden-Eijnden, E., Illustration of transition path theory on a collection of simple examples, J. Chem. Phys., 125 (2006), 084110.
[34] Metzner, P., Schütte, C., and Vanden-Eijnden, E., Transition path theory for Markov jump processes, Multiscale Model. Simul., 7 (2009), pp. 1192-1219, doi:10.1137/070699500. · Zbl 1185.60086
[35] Ren, W., Vanden-Eijnden, E., Maragakis, P., and E, W., Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide, J. Chem. Phys., 123 (2005), 052301.
[36] Sheu, S.-J., Stochastic control and exit probabilities of jump processes, SIAM J. Control Optim., 23 (1985), pp. 306-328, doi:10.1137/0323022. · Zbl 0567.60032
[37] Todorov, E., Efficient computation of optimal actions, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 11478-11483. · Zbl 1203.68327
[38] Trillos, N. Garcia and Slepčev, D., On the rate of convergence of empirical measures in \(\infty \) -transportation distance, Canad. J. Math., 67 (2015), pp. 1358-1383. · Zbl 1355.60009
[39] Vanden-Eijnden, E. and Heymann, M., The geometric minimum action method for computing minimum energy paths, J. Chem. Phys., 128 (2008), 061103.
[40] Varadhan, S. R. S., Stochastic Processes, AMS, Providence, RI, 2007. · Zbl 1133.60004
[41] Veretennikov, A. Yu., On polynomial mixing bounds for stochastic differential equations, Stochastic Process. Appl., 70 (1997), pp. 115-127. · Zbl 0911.60042
[42] Zhang, L., Wang, H., and E, W., Reinforced dynamics for enhanced sampling in large atomic and molecular systems, J. Chem. Phys., 148 (2018), 124113.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.