×

Scattering of an inhomogeneous coupled Schrödinger system in the conformal space. (English) Zbl 07912327

Summary: This paper studies the inhomogeneous defocusing coupled Schrödinger system \[ i \dot{u}_j + \Delta u_j = |x|^{-\rho} \bigg(\sum_{1 \leq k \leq m} a_{jk} |u_k|^p \bigg) |u_j|^{p-2} u_j, \quad \rho>0, \, j \in [1, m]. \] The goal of this work is to prove the scattering of energy global solutions in the conformal space made up of \(f \in H^1 (\mathbb{R}^N)\) such that \(xf \in L^2 (\mathbb{R}^N)\). The present paper is a complement of the previous work by the first author and Ghanmi [T. Saanouni and R. Ghanmi, Inhomogeneous coupled non-linear Schrödinger systems, J. Math. Phys. 62 (2021), no. 10, Paper No. 101508]. Indeed, the supplementary assumption \(x u_0 \in L^2\) enables us to get the scattering in the mass-sub-critical regime \(p_0 < p \leq \frac{2-\rho}{N} + 1\), where \(p_0\) is the Strauss exponent. The proof is based on the decay of global solutions coupled with some non-linear estimates of the source term in Strichartz norms and some standard conformal transformations. Precisely, one gets \[ |t|^{\alpha} \|u(t)\|_{L^r (\mathbb{R}^N)} \lesssim 1 \] for some \(\alpha>0\) and a range of Lebesgue norms. The decay rate in the mass super-critical regime is the same one as of \(e^{i \cdot \Delta} u_0\). This rate is different in the mass sub-critical regime, which requires some extra assumptions. The novelty here is the scattering of global solutions in the weighted conformal space for the class of source terms \(p_0<p<\frac{2-\rho}{N-2}+1\). This helps to better understand the asymptotic behavior of the energy solutions. Indeed, the source term has a negligible effect for large time and the above non-linear Schrödinger problem behaves like the associated linear one. In order to avoid a singular source term, one assumes that \(p \geq 2\), which restricts the space dimensions to \(N \leq 3\). In a paper in progress, the authors treat the same problem in the complementary case \(\rho<0\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35P25 Scattering theory for PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), Article ID 2661.
[2] H. A. Alkhidhr, Closed-form solutions to the perturbed NLSE with Kerr law nonlinearity in optical fibers, Results in Phys. 22 (2021), Article ID 103875.
[3] L. Aloui and S. Tayachi, Local well-posedness for the inhomogeneous nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst. 41 (2021), no. 11, 5409-5437. · Zbl 1479.35759
[4] J. Belmonte-Beitia, V. M. Pérez-García and P. J. Torres, Solitary waves for linearly coupled nonlinear Schrödinger equations with inhomogeneous coefficients, J. Nonlinear Sci. 19 (2009), no. 4, 437-451. · Zbl 1361.34043
[5] J. L. Bona and J.-C. Saut, Dispersive blow-up II. Schrödinger-type equations, optical and oceanic rogue waves, Chinese Ann. Math. Ser. B 31 (2010), no. 6, 793-818. · Zbl 1204.35132
[6] L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. 202 (2021), Paper No. 112118. · Zbl 1452.35179
[7] L. Campos and M. Cardoso, A virial-Morawetz approach to scattering for the non-radialinhomogeneous NLS, Proc. Amer. Math. Soc. 150 (2022), no. 5, 2007-2021. · Zbl 1495.35158
[8] M. Cardoso, L. G. Farah, C. M. Guzmán and J. Murphy, Scattering below the ground state for the intercritical non-radial inhomogeneous NLS, Nonlinear Anal. Real World Appl. 68 (2022), Paper No. 103687. · Zbl 1504.35466
[9] T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, New York University, New York, 2003. · Zbl 1055.35003
[10] T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math. 19 (2017), no. 2, Article ID 1650038. · Zbl 1365.35149
[11] T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys. 147 (1992), no. 1, 75-100. · Zbl 0763.35085
[12] Y. Cho, S. Hong and K. Lee, On the global well-posedness of focusing energy-critical inhomogeneous NLS, J. Evol. Equ. 20 (2020), no. 4, 1349-1380. · Zbl 1464.35316
[13] V. D. Dinh, Scattering theory in weighted L^2 space for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, Adv. Pure Appl. Math. 12 (2021), no. 3, 38-72. · Zbl 1522.35464
[14] B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc. 145 (2017), no. 11, 4859-4867. · Zbl 1373.35287
[15] L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ. 16 (2016), no. 1, 193-208. · Zbl 1339.35287
[16] L. G. Farah and C. M. Guzmán, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations 262 (2017), no. 8, 4175-4231. · Zbl 1362.35284
[17] L. G. Farah and C. M. Guzmán, Scattering for the radial focusing inhomogeneous NLS equation in higher dimensions, Bull. Braz. Math. Soc. (N. S.) 51 (2020), no. 2, 449-512. · Zbl 1437.35623
[18] F. Genoud and C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves, Discrete Contin. Dyn. Syst. 21 (2008), no. 1, 137-186. · Zbl 1154.35082
[19] R. Ghanmi, H. Hezzi and T. Saanouni, A note on inhomogeneous coupled Schrödinger equations, Ann. Henri Poincaré 21 (2020), no. 9, 2775-2814. · Zbl 1447.35294
[20] T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana J. Phys. 55 (2000), no. 5-6, 835-842.
[21] J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 144 (1992), no. 1, 163-188. · Zbl 0762.35008
[22] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797. · Zbl 0372.35009
[23] C. M. Guzmán, On well posedness for the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. Real World Appl. 37 (2017), 249-286. · Zbl 1375.35486
[24] C. M. Guzmán and J. Murphy, Scattering for the non-radial energy-critical inhomogeneous NLS, J. Differential Equations 295 (2021), 187-210. · Zbl 1475.35319
[25] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955-980. · Zbl 0922.35028
[26] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), no. 3, 645-675. · Zbl 1115.35125
[27] J. Kim, Y. Lee and I. Seo, On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case, J. Differential Equations 280 (2021), 179-202. · Zbl 1462.35357
[28] Y. Lee and I. Seo, The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation, Arch. Math. (Basel) 117 (2021), no. 4, 441-453. · Zbl 1479.35801
[29] C. S. Liu and V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas 1 (1994), no. 9, 3100-3103.
[30] C. Miao, J. Murphy and J. Zheng, Scattering for the non-radial inhomogeneous NLS, Math. Res. Lett. 28 (2021), no. 5, 1481-1504. · Zbl 1502.81061
[31] J. Murphy, A simple proof of scattering for the intercritical inhomogeneous NLS, Proc. Amer. Math. Soc. 150 (2022), no. 3, 1177-1186. · Zbl 1483.35219
[32] T. Saanouni, Scattering threshold for the focusing coupled Schrödinger system revisited, NoDEA Nonlinear Differential Equations Appl. 28 (2021), no. 4, Paper No. 44. · Zbl 1479.35822
[33] T. Saanouni, Scattering threshold for a coupled focusing nonlinear Schrödinger system, Appl. Anal. 101 (2022), no. 7, 2418-2445. · Zbl 1492.35318
[34] T. Saanouni and R. Ghanmi, Inhomogeneous coupled non-linear Schrödinger systems, J. Math. Phys. 62 (2021), no. 10, Paper No. 101508. · Zbl 1483.35223
[35] T. Saanouni and H. Nafti, The non-radial focusing inhomogeneous coupled Schrödinger systems in three space dimensions, Potential Anal. (2022), 10.1007/s11118-022-10047-4. · Zbl 1532.35430 · doi:10.1007/s11118-022-10047-4
[36] B. K. Som, M. R. Gupta and B. Dasgupta, Coupled nonlinear Schrödinger equation for Langmuir and dispersive ion acoustic waves, Phys. Lett. A 72 (1979), no. 2, 111-114.
[37] K. H. Spatschek, Coupled localized electron-plasma waves and oscillatory ion-acoustic perturbations, Phys. Fluids 21 (1978), Article ID 1032. · Zbl 0378.76093
[38] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), no. 1, 110-133. · Zbl 0466.47006
[39] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. · Zbl 0372.35001
[40] Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N. S.) 11 (1984), no. 1, 186-188. · Zbl 0555.35028
[41] A. Uthayakumar, Y.-G. Han and S. B. Lee, Soliton solutions of coupled inhomogeneous nonlinear Schrödinger equation in plasma, Chaos Solitons Fractals 29 (2006), no. 4, 916-919. · Zbl 1142.35608
[42] Y. Wang and C. Xu, Defocusing \dot{H}^{\frac{1}{2}}-critical inhomogeneous nonlinear Schrödinger equations, J. Math. Anal. Appl. 521 (2023), no. 2, Paper No. 126913. · Zbl 1508.35161
[43] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968), 190-194.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.