×

Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. (English) Zbl 1479.35759

Summary: We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation \(i\partial_t u +\Delta u = \mu |x|^{-b}|u|^\alpha u,\; u(0)\in H^s(\mathbb{R}^N),\; N\geq 1,\; \mu\in\mathbb{C},\; b>0\) and \(\alpha>0.\) Only partial results are known for the local existence in the subcritical case \(\alpha<(4-2b)/(N-2s)\) and much more less in the critical case \(\alpha = (4-2b)/(N-2s)\). In this paper, we develop a local well-posedness theory for the both cases. In particular, we establish new results for the continuous dependence and for the unconditional uniqueness. Our approach provides simple proofs and allows us to obtain lower bounds of the blowup rate and of the life span. The Lorentz spaces and the Strichartz estimates play important roles in our argument. In particular this enables us to reach the critical case and to unify results for \(b = 0\) and \(b>0\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B44 Blow-up in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] L. Aloui and S. Tayachi, Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation, Preprint, 2021.
[2] L. Aloui and S. Tayachi, Local existence, global existence and scattering for the 3D inhomogeneous nonlinear Schrödinger equation, Preprint, 2021.
[3] K. F. Andersen; R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math., 69, 19-31 (1980/81) · Zbl 0448.42016 · doi:10.4064/sm-69-1-19-31
[4] J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin-New York, 1976. · Zbl 0344.46071
[5] T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences/Amer. Math. Soc., New York/Providence, RI, 2003. · Zbl 1055.35003
[6] T. Cazenave; D. Fang; Z. Han, Continuous dependence for NLS in fractional order spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 135-147 (2011) · Zbl 1209.35124 · doi:10.1016/j.anihpc.2010.11.005
[7] T. Cazenave; F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\), Nonlinear Anal., 14, 807-836 (1990) · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A
[8] T. Cazenave; F. B. Weissler, The structure of solutions to the pseudo-conformally invariant nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, 117, 251-273 (1991) · Zbl 0733.35094 · doi:10.1017/S0308210500024719
[9] Y. Cho, S. Hong and K. Lee, On the GWP of focusing energy-critical inhomogeneous NLS, Preprint, arXiv: 1905.10063.
[10] F. M. Christ; M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100, 87-109 (1991) · Zbl 0743.35067 · doi:10.1016/0022-1236(91)90103-C
[11] D. V. Cruz-Uribe, J. M. Martell and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications, 215. Birkhäuser/Springer Basel AG, Basel, 2011. · Zbl 1234.46003
[12] D. Cruz-Uribe; V. Naibo, Kato-Ponce inequalities on weighted and variable Lebesgue spaces, Differential Integral Equations, 29, 801-836 (2016) · Zbl 1374.42040
[13] V. D. Dinh, Scattering theory in a weighted \(L^2\) space for a class of the defocusing inhomegeneous nonlinear Schrödinger equation, Preprint, 2017. arXiv: 1710.01392.
[14] V. D. Dinh, Blowup of \(H^1\) solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174, 169-188 (2018) · Zbl 1388.35177 · doi:10.1016/j.na.2018.04.024
[15] J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics, 29. American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. · Zbl 0969.42001
[16] F. Genoud, Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stud., 10, 357-400 (2010) · Zbl 1204.35152 · doi:10.1515/ans-2010-0207
[17] F. Genoud; C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21, 137-186 (2008) · Zbl 1154.35082 · doi:10.3934/dcds.2008.21.137
[18] J. Ginibre; G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis, 32, 1-32 (1979) · Zbl 0396.35028 · doi:10.1016/0022-1236(79)90076-4
[19] L. Grafakos, Classical Fourier Analysis, 2nd ed., Graduate texts in Mathematics, Vol. 249, Springer, New York, 2008. · Zbl 1220.42001
[20] C. M. Guzmán, On well posedness for the inhomogneous nonlinear Schrödinger equation, Nonlinear Anal. Real World Appl., 37, 249-286 (2017) · Zbl 1375.35486 · doi:10.1016/j.nonrwa.2017.02.018
[21] H. Hajaiej; X. Yu; Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl., 396, 569-577 (2012) · Zbl 1254.26010 · doi:10.1016/j.jmaa.2012.06.054
[22] I. Halperin, Uniform convexity in function spaces, Duke Math. J., 21, 195-204 (1954) · Zbl 0055.33702
[23] R. A. Hunt, On \(L^{p, q}\) spaces, Enseign. Math., 12, 249-276 (1966) · Zbl 0181.40301
[24] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46, 113-129 (1987) · Zbl 0632.35038
[25] T. Kato, On nonlinear Schrödinger equations. Ⅱ. \(H^s\)-solutions and unconditional well-posedness, J. Anal. Math., 67, 281-306 (1995) · Zbl 0848.35124 · doi:10.1007/BF02787794
[26] M. Keel; T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120, 955-980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[27] C. E. Kenig; F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166, 645-675 (2006) · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4
[28] R. Killip and M. Vişan, Nonlinear Schrödinger equations at critical regularity, in Evolution Equations, Clay Math. Proc., 17, Amer. Math. Soc., Providence, RI (Edited by D. Ellwood, I. Rodnianski, G. Staffilani and J. Wunsch), Clay Mathematics Institute, Cambridge, MA, (2013), 325-437. · Zbl 1298.35195
[29] J. Kim, Y. Lee and I. Seo, On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case, J. Differential Equations, 280 (2021), 179-202. arXiv: 1907.11871v1. · Zbl 1462.35357
[30] Y. Lee and I. Seo, The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation, preprint, 2019. arXiv: 1911.01112v2.
[31] P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics., 431 (2002), Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1034.35093
[32] G. G. Lorentz, Some new functional spaces, Ann. of Math., 51, 37-55 (1950) · Zbl 0035.35602 · doi:10.2307/1969496
[33] C. E. Mueller; F. B. Weissler, Single point blow-up for a general semilinear heat equation, Indiana Univ. Math. J., 34, 881-913 (1985) · Zbl 0597.35057 · doi:10.1512/iumj.1985.34.34049
[34] R. O’Neil, Convolution operators and \(L(p, q)\) spaces, Duke Math. J., 30, 129-142 (1963) · Zbl 0178.47701
[35] K. M. Rogers, Unconditional well-posedness for subcritical NLS in \(H^s\), C. R. Math. Acad. Sci. Paris, 345, 395-398 (2007) · Zbl 1156.35094 · doi:10.1016/j.crma.2007.09.003
[36] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidian Spaces, Princeton Mathematical Series, Princeton University Press, 1971. · Zbl 0232.42007
[37] R. J. Taggart, Inhomogeneous Strichartz estimates, Forum Math., 22, 825-853 (2010) · Zbl 1213.35155 · doi:10.1515/FORUM.2010.044
[38] T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations, (2005), No. 118, 28 pp. · Zbl 1245.35122
[39] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Mathematica Italiana, Springer-Verlag, Berlin Heidelberg, 2007. · Zbl 1126.46001
[40] L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 1, 479-500 (1998) · Zbl 0929.46028
[41] S. Tayachi, Uniqueness and non-uniqueness of solutions for critical Hardy-Hénon parabolic equations, J. Math. Anal.Appl., 488 (2020), 123976, 51 pp. · Zbl 1437.35437
[42] S. Tayachi; F. B. Weissler, The nonlinear heat equation involving highly singular initial values and new blowup and life span results, J. Elliptic Parabol. Equ., 4, 141-176 (2018) · Zbl 1391.35210 · doi:10.1007/s41808-018-0014-5
[43] S. Tayachi and F. B. Weissler, Some remarks on life span results, Preprint. · Zbl 1391.35210
[44] Y. Tsutsumi, \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30, 115-125 (1987) · Zbl 0638.35021
[45] F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38, 29-40 (1981) · Zbl 0476.35043 · doi:10.1007/BF02761845
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.