×

Scattering for the radial focusing inhomogeneous NLS equation in higher dimensions. (English) Zbl 1437.35623

Summary: We consider the inhomogeneous nonlinear Schrödinger equation \[ i u_t +\Delta u+|x|^{-b}|u|^\alpha u = 0, \quad x\in \mathbb{R}^N,\] where \(N\geq 2\), \(\frac{4-2b}{N}<\alpha <\frac{4-2b}{N-2}\) (\(\frac{4-2b}{N}<\alpha <\infty\) if \(N=2)\) and \(0<b<\min \{N/3,1\} \). For a radial initial data \(u_0 \in H^1({\mathbb{R}}^N)\), under a certain smallness condition, we prove that the corresponding solution is global and scatters. The smallness condition is related to the ground state solution of \(-Q+\Delta Q+ |x|^{-b}|Q|^{\alpha }Q=0\) and the critical Sobolev index \(s_c=\frac{N}{2}-\frac{2-b}{\alpha } \). This is an extension of the recent work [L. G. Farah and C. M. Guzmán, J. Differ. Equations 262, No. 8, 4175–4231 (2017; Zbl 1362.35284)] by the same authors, where they consider the case \(N=3\) and \(\alpha =2\). The proof is inspired by the concentration-compactness/rigidity method developed by C. E. Kenig and F. Merle [Invent. Math. 166, No. 3, 645–675 (2006; Zbl 1115.35125)] to study the \(H^1({\mathbb{R}}^N)\) critical NLS equation and also J. Holmer and S. Roudenko [Commun. Math. Phys. 282, No. 2, 435–467 (2008; Zbl 1155.35094)] in the case of \(H^1({\mathbb{R}}^N)\) subcritical and \(L^2({\mathbb{R}}^N)\) supercritical NLS equations.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
78A60 Lasers, masers, optical bistability, nonlinear optics
78A45 Diffraction, scattering
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Bergh, J.; Löfström, J., Interpolation Spaces, An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223 (1976), Berlin: Springer, Berlin · Zbl 0344.46071
[2] Cazenave, T., Weissler, F.B.: Some remarks on the nonlinear Schrödinger equation in the critical case. In: Nonlinear Semigroups, Partial Differential Equations and Attractors, Lecture Notes in Mathematics, vol.1394, pp. 18-29. Springer, Berlin (1989) · Zbl 0694.35170
[3] Cazenave, T.; Fang, D.; Han, Z., Continuous dependence for NLS in fractional order spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 1, 135-147 (2011) · Zbl 1209.35124 · doi:10.1016/j.anihpc.2010.11.005
[4] Combet, V.; Genoud, F., Classification of minimal mass blow-up solutions for an \(L^2\) critical inhomogeneous NLS, J. Evol. Equ., 16, 2, 483-500 (2016) · Zbl 1358.35165 · doi:10.1007/s00028-015-0309-z
[5] Demengel, F., Demengel, G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. Springer, London; EDP Sciences, Les Ulis (2012) · Zbl 1239.46001
[6] Dinh, VD, Blowup of \(H^1\) solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174, 169-188 (2018) · Zbl 1388.35177 · doi:10.1016/j.na.2018.04.024
[7] Dinh, V.D.: Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ. (2019) (to appear) · Zbl 1420.35349
[8] Duyckaerts, T.; Holmer, J.; Roudenko, S., Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15, 6, 1233-1250 (2008) · Zbl 1171.35472 · doi:10.4310/MRL.2008.v15.n6.a13
[9] Fang, D.; Xie, J.; Cazenave, T., Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54, 10, 2037-2062 (2011) · Zbl 1230.35128 · doi:10.1007/s11425-011-4283-9
[10] Farah, LG, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16, 1, 193-208 (2016) · Zbl 1339.35287 · doi:10.1007/s00028-015-0298-y
[11] Farah, LG; Guzmán, CM, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differ. Equ., 262, 8, 4175-4231 (2017) · Zbl 1362.35284 · doi:10.1016/j.jde.2017.01.013
[12] Fibich, G.; Wang, XP, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Phys. D, 175, 1-2, 96-108 (2003) · Zbl 1098.74614 · doi:10.1016/S0167-2789(02)00626-7
[13] Genoud, F.; Stuart, CA, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21, 1, 137-186 (2008) · Zbl 1154.35082 · doi:10.3934/dcds.2008.21.137
[14] Gérard, P., Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. Calc. Var., 3, 213-233 (1998) · Zbl 0907.46027 · doi:10.1051/cocv:1998107
[15] Gill, TS, Optical guiding of laser beam in nonuniform plasma, Pramana-J. Phys., 55, 5-6, 835-842 (2000) · doi:10.1007/s12043-000-0051-z
[16] Guevara, CD, Global behavior of finite energy solutions to the \(d\)-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, 2014, 2, 177-243 (2014) · Zbl 1302.35348
[17] Guzmán, CM, On well posedness for the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. Real World Appl., 37, 249-286 (2017) · Zbl 1375.35486 · doi:10.1016/j.nonrwa.2017.02.018
[18] Holmer, J.; Roudenko, S., A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Commun. Math. Phys., 282, 2, 435-467 (2008) · Zbl 1155.35094 · doi:10.1007/s00220-008-0529-y
[19] Hong, Y., Scattering for a nonlinear Schrödinger equation with a potential, Commun. Pure Appl. Anal., 15, 5, 1571-1601 (2016) · Zbl 1351.35157 · doi:10.3934/cpaa.2016003
[20] Kato, T., On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46, 1, 113-129 (1987) · Zbl 0632.35038
[21] Keel, M.; Tao, T., Endpoint Strichartz estimates, Am. J. Math., 120, 5, 955-980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[22] Kenig, CE; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166, 3, 645-675 (2006) · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4
[23] Killip, R.; Kwon, S.; Shao, S.; Visan, M., On the mass-critical generalized KdV equation, Discrete Contin. Dyn. Syst., 32, 1, 191-221 (2012) · Zbl 1234.35226 · doi:10.3934/dcds.2012.32.191
[24] Killip, R.; Murphy, J.; Visan, M.; Zheng, J., The focusing cubic NLS with inverse-square potential in three space dimensions, Differ. Integr. Equ., 30, 3-4, 161-206 (2017) · Zbl 1413.35407
[25] Linares, F.; Ponce, G., Introduction to Nonlinear Dispersive Equations (2015), New York: Universitext. Springer, New York · Zbl 1310.35002
[26] Liu, CS; Tripathi, VK, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1, 9, 3100-3103 (1994) · doi:10.1063/1.870501
[27] Lu, J.; Miao, C.; Murphy, J., Scattering in \(H^1\) for the intercritical NLS with an inverse-square potential, J. Differ. Equ., 264, 5, 3174-3211 (2018) · Zbl 1387.35554 · doi:10.1016/j.jde.2017.11.015
[28] Merle, F., Nonexistence of minimal blow-up solutions of equations \(iu_t=-\Delta u-k(x)\vert u\vert^{4/N}u\) in \({ R}^N\), Ann. Inst. H. Poincaré Phys. Théor., 64, 1, 33-85 (1996) · Zbl 0846.35129
[29] Raphaël, P.; Szeftel, J., Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Am. Math. Soc., 24, 2, 471-546 (2011) · Zbl 1218.35226 · doi:10.1090/S0894-0347-2010-00688-1
[30] Strauss, WA, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 2, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[31] Tao, T.; Visan, M.; Zhang, X., The nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Partial Differ. Equ., 32, 7-9, 1281-1343 (2007) · Zbl 1187.35245 · doi:10.1080/03605300701588805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.