×

Fourier decay of fractal measures on surfaces of co-dimension two in \(\mathbb{R}^5\). (English) Zbl 1534.42019

Summary: In this paper, we study the Fourier decay of fractal measures on the quadratic surfaces of high co-dimensions. Unlike the case of co-dimension 1, quadratic surfaces of high co-dimensions possess some special scaling structures and degenerate characteristics. We will adopt the strategy from X. Du and R. Zhang [Ann. Math. (2) 189, No. 3, 837–861 (2019; Zbl 1433.42010)], combined with the broad-narrow analysis with different dimensions as divisions, to obtain a few lower bounds of Fourier decay of fractal measures on quadratic surfaces of co-dimension two in \(\mathbb{R}^5\).

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B37 Harmonic analysis and PDEs
28A80 Fractals
28A75 Length, area, volume, other geometric measure theory

Citations:

Zbl 1433.42010

References:

[1] Bak, J.-G.; Lee, J.; Lee, S., Bilinear restriction estimates for surfaces of codimension bigger than 1, Anal. PDE, 10, 8, 1961-1985, (2017) · Zbl 1376.42015
[2] Bak, J.-G.; Lee, S., Restriction of the Fourier transform to a quadratic surface in \(\mathbb{R}^n\), Math. Z., 247, 2, 409-422, (2004) · Zbl 1073.42006
[3] Barron, A.; Erdoǧan, M. B.; Harris, T. L.J., Fourier decay of fractal measures on hyperboloids, Trans. Am. Math. Soc., 374, 2, 1041-1075, (2021) · Zbl 1455.42023
[4] Bennett, J.; Carbery, A.; Christ, M.; Tao, T., The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal., 17, 5, 1343-1415, (2008) · Zbl 1132.26006
[5] Bennett, J.; Carbery, A.; Christ, M.; Tao, T., Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities, Math. Res. Lett., 17, 4, 647-666, (2010) · Zbl 1247.26029
[6] Bennett, J.; Carbery, A.; Tao, T., On the multilinear restriction and Kakeya conjectures, Acta Math., 196, 2, 261-302, (2006) · Zbl 1203.42019
[7] Bourgain, J., Decoupling, exponential sums and the Riemann zeta function, J. Am. Math. Soc., 30, 1, 205-224, (2017) · Zbl 1352.11065
[8] Bourgain, J.; Demeter, C., The proof of the \(l^2\) decoupling conjecture, Ann. Math., 182, 1, 351-389, (2015) · Zbl 1322.42014
[9] Bourgain, J.; Demeter, C., Decouplings for surfaces in \(\mathbb{R}^4\), J. Funct. Anal., 270, 4, 1299-1318, (2016) · Zbl 1332.53007
[10] Bourgain, J.; Demeter, C., Decouplings for curves and hypersurfaces with nonzero Gaussian curvature, J. Anal. Math., 133, 279-311, (2017) · Zbl 1384.42016
[11] Bourgain, J.; Demeter, C.; Guth, L., Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. Math., 184, 2, 633-682, (2016) · Zbl 1408.11083
[12] Bourgain, J.; Guth, L., Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal., 21, 6, 1239-1295, (2011) · Zbl 1237.42010
[13] Carbery, A.; Christ, M.; Wright, J., Multidimensional van der Corput and sublevel set estimates, J. Am. Math. Soc., 12, 4, 981-1015, (1999) · Zbl 0938.42008
[14] De Carli, L., Unique continuation for elliptic operators with non-multiple characteristics, Isr. J. Math., 118, 15-27, (2000) · Zbl 0962.47021
[15] Cho, C.; Ham, S.; Lee, S., Fractal Strichartz estimate for the wave equation, Nonlinear Anal., 150, 61-75, (2017) · Zbl 1355.35005
[16] Christ, M., Restriction of the Fourier transform to submanifolds of low codimension, (1982), University of Chicago, Ph.D. thesis
[17] Christ, M., On the restriction of the Fourier transform to curves: endpoint results and the degenerate case, Trans. Am. Math. Soc., 287, 1, 223-238, (1985) · Zbl 0563.42010
[18] Demeter, C.; Guo, S.; Shi, F., Sharp decouplings for three dimensional manifolds in \(\mathbb{R}^5\), Rev. Mat. Iberoam., 35, 2, 423-460, (2019) · Zbl 1420.42008
[19] Du, X.; Guth, L.; Li, X., A sharp Schrödinger maximal estimate in \(\mathbb{R}^2\), Ann. Math., 186, 2, 607-640, (2017) · Zbl 1378.42011
[20] Du, X.; Guth, L.; Li, X.; Zhang, R., Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimate, Forum Math. Sigma, 6, e14, 1-18, (2018) · Zbl 1395.42063
[21] Du, X.; Zhang, R., Sharp \(L^2\) estimate of Schrödinger maximal function in higher dimensions, Ann. Math., 189, 3, 837-861, (2019) · Zbl 1433.42010
[22] Eroǧan, M. B., A note on the Fourier transform of fractal measures, Math. Res. Lett., 11, 3, 299-313, (2004) · Zbl 1083.42006
[23] Falconer, K. J., On the Hausdorff dimensions of distance sets, Mathematika, 32, 2, 206-212, (1985) · Zbl 0605.28005
[24] Guo, S.; Oh, C., Fourier restriction estimates for surfaces of co-dimension two in \(\mathbb{R}^5\), J. Anal. Math., 148, 471-499, (2022) · Zbl 1505.42011
[25] Guo, S.; Oh, C.; Roos, J.; Yung, P.-L.; Zorin-Kranich, P., Decoupling for two quadratic forms in three variables: a complete characterization, Rev. Mat. Iberoam., 39, 1, 283-306, (2023) · Zbl 1514.42023
[26] Guo, S.; Zorin-Kranich, P., Decoupling for certain quadratic surfaces of low co-dimensions, J. Lond. Math. Soc., 102, 1, 319-344, (2020) · Zbl 1454.42015
[27] Guo, Shaoming; Oh, Changkeun; Zhang, Ruixiang; Zorin-Kranich, Pavel, Decoupling inequalities for quadratic forms, Duke Math. J., 172, 2, 387-445, (2023) · Zbl 1507.42016
[28] Guth, L., A short proof of the multilinear Kakeya inequality, Math. Proc. Camb. Philos. Soc., 158, 1, 147-153, (2015) · Zbl 1371.42007
[29] Guth, L.; Wang, H.; Zhang, R., A sharp square function estimate for the cone in \(\mathbb{R}^3\), Ann. Math., 192, 2, 551-581, (2020) · Zbl 1450.35156
[30] Harris, T. L.J., Improved decay of conical averages of the Fourier transform, Proc. Am. Math. Soc., 147, 11, 4781-4796, (2019) · Zbl 1423.42047
[31] Lee, J.; Lee, S., Restriction estimates to complex hypersurfaces, J. Math. Anal. Appl., 506, 2, Article 125702 pp., (2020) · Zbl 1475.42026
[32] Maldague, D., Regularized Brascamp-Lieb inequalities and an application, Q. J. Math., 73, 1, 311-331, (2022) · Zbl 1497.26033
[33] Mattila, P., Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets, Mathematika, 34, 2, 207-228, (1987) · Zbl 0645.28004
[34] Mockenhaupt, G., Bounds in Lebesgue spaces of oscillatory integral operators, (1996), University of Siegen, Habilitation Ph.D. thesis · Zbl 0916.42009
[35] Oh, C., Decouplings for three-dimensional surfaces in \(\mathbb{R}^6\), Math. Z., 290, 1-2, 389-419, (2018) · Zbl 1420.42007
[36] Ou, Y.; Wang, H.; Wilson, B.; Du, X.; Guth, L.; Zhang, R., Weighted restriction estimates and application to Falconer distance set problem, Am. J. Math., 143, 1, 175-211, (2021) · Zbl 1461.28003
[37] Sjölin, P., Estimate of averages of Fourier transforms of measures with finite energy, Ann. Acad. Sci. Fenn., Math., 22, 1, 227-236, (1997) · Zbl 0865.42007
[38] Wolff, T. H., Decay of circular means of Fourier transforms of measures, Int. Math. Res. Not., 1999, 10, 547-567, (1999) · Zbl 0930.42006
[39] Wongkew, R., Volumes of tubular neighbourhoods of real algebraic varieties, Pac. J. Math., 159, 177-184, (1993) · Zbl 0803.14029
[40] Wooley, T. D., The cubic case of the main conjecture in Vinogradov’s mean value theorem, Adv. Math., 294, 532-561, (2016) · Zbl 1365.11097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.