×

Bounds on oscillatory integral operators based on multilinear estimates. (English) Zbl 1237.42010

Let \(S\subset \mathbb{R}^n\) be a smooth, compact hyper-surface with positive definite second fundamental form. Let \(\sigma\) be its surface measure. Assume the exponent \(p\) satisfies
(i)
\(p>2\frac{4n+3}{4n-3}\) if \(n\equiv 0\pmod{3}\);
(ii)
\(p>\frac{2n+1}{n-1}\) if \(n\equiv 1\pmod{3}\);
(iii)
\(p>\frac{4(n+1)}{2n-1}\) if \(n\equiv 2\pmod{3}\).
Applying the Bennett-Carbery-Tao multilinear restriction estimate, the authors prove that if \(p\) satisfies (i), (ii) or (iii), then the inequality \(\|\widehat{\mu}\|_p\lesssim C_p \|\frac{d\mu}{d\sigma}\|_{\infty}\) holds for all measures \(\mu\ll\sigma\) such that \(\frac{d\mu}{d\sigma}\in L^{\infty}(S,d\sigma)\) and, for \(n=3\) and \(p>3{3 \over 10}\), then \(\|\widehat{\mu}\|_p \leq C_p\|\frac{d\mu}{d\sigma}\|_{\infty}\) if \(\mu\ll\sigma\) and \(\frac{d\mu}{d\sigma}\in L^{\infty}(S,d\sigma)\). Here \(\widehat{\mu}\) denotes the Fourier transform of the measure \(\mu\). These results give improved \(L^p\) estimates in the Stein restriction problem for dimension at least \(5\) and a small improvement in dimension \(3\).
The authors also consider the Hörmander-type oscillatory integral operators
\[ (T_{\lambda})f(x):=\int_{\mathbb{R}^{n-1}} e^{i\lambda\psi(x,y)}f(y)\,dy \quad (\|f\|_{\infty}\leq1) \]
with real analytic phase function
\[ \psi(x,y)=x_1y_1+\cdots+x_{n-1}y_{n-1}+x_n\langle Ay,y\rangle +O(|x||y|^3)+O(|x|^2|y|^2){(\ast_1)} \]
and \(A\) non-degenerate (\(x\in \mathbb{R}^n,\,y\in\mathbb{R}^{n-1}\) are restricted to a neighborhood of \(0\)). Let \(T_{\lambda}\) be as above with \(A\) positive or negative definite in \((\ast_1)\). The authors show that \(\|T_{\lambda}f\|_p \leq C_p\lambda^{-n/p} \|f\|_{\infty}\) holds for \(p\) satisfying {(i)}, {(ii)} or {(iii)}, what is new when \(n\geq 5\). If \(n\) is even and \(T_{\lambda}\) as above, assuming in \((\ast_1)\) that \(A\) is non-degenerate, the authors also prove the inequalities \(\|T_{\lambda}f\|_p\leq C_p\lambda^{-n/p} \|f\|_{\infty}\) for \(p>\frac{2(n+2)}{n}\) which is the best possible range of \(p\).
Recall that the Bochner-Riesz multiplier \(S_{\delta}\) is defined by \((S_{\delta}f)^{\wedge}(\xi):=(1-|\xi|^2)_+\widehat{f}(\xi)\) for all \(\xi\in{\mathbb R}^n\). Equivalently \(S_{\delta}f=f*K_{\delta}\), where \(K_{\delta}\) has the asymptotic \[ K_{\delta}(x)\sim e^{\pm2\pi i|x|}/|x|^{\frac{n+1}2+\delta}.{(\ast_2)} \] The Bochner-Riesz multilinear problem is then to obtain the optimal condition on \(\delta\geq 0\) to satisfy \[ \|S_{\delta}f\|_{L^p(\mathbb{R}^n)}\leq C\|f\|_{L^p(\mathbb{R}^n)}.{(\ast_3)} \]
According to the paper, the condition \[ \delta>\max\left(0,\left|\frac12-\frac1p\right|n-\frac12\right){(\ast_4)} \] is clearly necessary in view of \((\ast_2)\). It is conjectured that \((\ast_4)\) also suffices for \((\ast_3)\) to hold and this was proven for \(n=2\) by L. Carleson and P. Sjölin [Stud. Math. 44, 287–299 (1972; Zbl 0215.18303)]. When \(n\geq3\), the authors verify that the Bochner-Riesz conjecture holds provided \(\max(p,p^{\prime})\) satisfies {(i)}, {(ii)} or {(iii)}.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
47A30 Norms (inequalities, more than one norm, etc.) of linear operators

Citations:

Zbl 0215.18303

References:

[1] Bennett J., Carbery T., Tao T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196, 261–302 (2006) · Zbl 1203.42019 · doi:10.1007/s11511-006-0006-4
[2] Bourgain J.: Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct. Anal. 1(2), 147–187 (1991) · Zbl 0756.42014 · doi:10.1007/BF01896376
[3] Bourgain J.: Some new estimates on oscillatory integrals. Annals Math. St., Princeton UP 42, 83–112 (1995) · Zbl 0840.42007
[4] Carleson L., Sjolin O.: Oscillatory integrals and a multilinear problem for the disc. Studia Math. 44, 287–299 (1972) · Zbl 0215.18303
[5] Cordoba A.: Geometric Fourier analysis. Ann. Inst. Fourier 32(3), 215–226 (1982) · Zbl 0488.42027 · doi:10.5802/aif.885
[6] Z. Dvir, On the size of Kakeya sets in finite fields, JAMS, to appear; $${\(\backslash\)tt arxiv:8003.2336}$$ · Zbl 1202.52021
[7] L. Guth, The endpoint case in the Bennett–Carbery–Tao multilinear Kakeya conjecture, Acta Math., to appear. · Zbl 1210.52004
[8] L. Hörmander, Oscillatory integrals and multipliers on F L p , Arkiv Math. II (1973), 1–11.
[9] Lee S.: Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces. J. Funct. Anal. 241(1), 56–98 (2006) · Zbl 1121.35151 · doi:10.1016/j.jfa.2006.05.011
[10] Stein E.: Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces. Proc. Sympos. Pure Math. Part 1, 3–20 (1978)
[11] E. Stein, Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis, Annals Math. St. 112, Princeton UP (1986). · Zbl 0618.42006
[12] Tao T.: A sharp bilinear restriction estimate for paraboloids. Geom. Funct. Anal. 13, 1359–1384 (2003) · Zbl 1068.42011 · doi:10.1007/s00039-003-0449-0
[13] Tao T.: The Bochner–Riesz conjecture implies the restriction conjecture. Duke Math. J. 96, 363–376 (1999) · Zbl 0980.42006 · doi:10.1215/S0012-7094-99-09610-2
[14] T. Tao, Recent progress on the restriction conjecture, Park City Proc., to appear. · Zbl 1083.42008
[15] Tao T., Vargas A., Vega L.: A bilinear approach to the restriction and Kakeya conjectures. JAMS 11(4), 967–1000 (1998) · Zbl 0924.42008
[16] Vargas A.: Restriction theorems for a surface with negative curvature. Math. Z. 249, 97–111 (2005) · Zbl 1071.42009 · doi:10.1007/s00209-004-0691-7
[17] Wisewell L.: Kakeya sets of curves. Geom. Funct. Anal. 15(6), 1319–1362 (2005) · Zbl 1117.43003 · doi:10.1007/s00039-005-0540-9
[18] Wolff T.: An improved bound for the Kakeya type maximal functions. Rev. Math. Iberoamericana 11(3), 651–674 (1995) · Zbl 0848.42015 · doi:10.4171/RMI/188
[19] Wolff T.: A sharp bilinear cone restriction estimate. Ann. of Math. (2) 153(3), 661–698 (2001) · Zbl 1125.42302 · doi:10.2307/2661365
[20] Wolff T.: A mixed norm estimate for the X-ray transform. Revista Math. Iberoamericana 14(3), 561–600 (1998) · Zbl 0927.44002 · doi:10.4171/RMI/245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.