×

Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets. (English) Zbl 0645.28004

For a positive Radon measure \(\mu\) in \({\mathbb{R}}^ n \)with compact support, let \(\sigma\) (\(\mu)\)(r) be the average of \(| {\hat \mu}|\) 2 over the sphere \(\{x:| x| =r\}\), and let \(I_ s(\mu)\) be the energy-integral \(\iint | x-y|^{-s} d\mu x d\mu y.\) It is shown that for \(0<s\leq (n-1)/2,\sigma (\mu)(r)\leq cI_ s(\mu)r^{-s}\) and that for \((n-1)/2<s<n\) only weaker estimates hold. Such relations between \(\sigma\) (\(\mu)\) and \(I_ s(\mu)\) are used to study the Hausdorff dimension of the distance sets \(\{| x-y|: x\in A,\quad y\in B\}\) and the intersections \(A\cap fB\), where f runs through the isometries of \({\mathbb{R}}^ n,\) and A and B are Borel sets in \({\mathbb{R}}^ n.\) This continues the earlier work of K. J. Falconer [Mathematika 32, 206-212 (1985; Zbl 0605.28005)] and the author [ibid. 213-217 (1985; Zbl 0569.28008)].
Reviewer: P.Mattila

MSC:

28A75 Length, area, volume, other geometric measure theory
28A12 Contents, measures, outer measures, capacities
Full Text: DOI

References:

[1] Falconer, Mathematika 32 pp 206– (1985)
[2] Falconer, Geometry of Fractal Sets (1985) · Zbl 0587.28004 · doi:10.1017/CBO9780511623738
[3] Carleson, Selected Problems on Exceptional Sets (1967)
[4] Watson, Theory of Bessel Functions (1944)
[5] Stein, Introduction to Fourier Analysis on Euclidean Spaces (1971) · Zbl 0232.42007
[6] DOI: 10.1016/S0924-6509(09)70272-7 · doi:10.1016/S0924-6509(09)70272-7
[7] DOI: 10.1007/BF02392192 · Zbl 0544.28004 · doi:10.1007/BF02392192
[8] Mattila, Mathematika 32 pp 213– (1985)
[9] Landkof, Foundations of Modern Potential Theory (1972) · Zbl 0253.31001 · doi:10.1007/978-3-642-65183-0
[10] Kaufmann, Acta Arithmetica 33 pp 265– (1981)
[11] Kahane, Ensembles parfaits et sèries trigonométriques (1963) · Zbl 0112.29304
[12] DOI: 10.2307/1995882 · Zbl 0236.26016 · doi:10.2307/1995882
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.