×

Global dynamics of a mosquito population suppression model under a periodic release strategy. (English) Zbl 07920423

Summary: It has been proved that periodic releases of Wolbachia-infected or irradiation-treated mosquitoes is an effective way to suppress wild mosquitoes and prevent the prevalence of mosquito-borne diseases. We have discussed some cases in consideration of the release amount \(c\) and release period \(T \), and in this paper we continue to explore the remaining complementary case and investigate the relevant stability of the origin and the exact number of periodic solutions in the switching model. Based on the release period threshold \(T^*\) introduced in the extant works, we define a new threshold \(T^{**}\) between the sexual lifespan \(\bar{T}\) of sterile mosquitoes and \(T^*\), and reveal the complete dynamics of the model, particularly, no \(T \)-periodic solutions when \(T\in(\bar{T}, T^{**}) \), a unique \(T \)-periodic solution when \(T = T^{**} \), and exactly two \(T \)-periodic solutions when \(T\in(T^{**}, T^*) \). Finally, we give some numerical simulations to seek the approximate value of \(T^{**}\) and demonstrate the global dynamical behaviors of wild mosquito population.

MSC:

34C25 Periodic solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
92D25 Population dynamics (general)
93D20 Asymptotic stability in control theory
Full Text: DOI

References:

[1] L. Almeida, M. Duprez, Y. Privat and N. Vauchelet, Optimal control strategies for the sterile mosquitoes technique, J. Differential Equations, 2022, 311, 229-266. · Zbl 1480.92161
[2] S. Ai, J. Li, J. Yu and B. Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(6), 3039-3052. · Zbl 1500.34035
[3] P. A. Bliman and Y. Dumont, Robust control strategy by the sterile insect technique for reducing epidemiological risk in presence of vector migration, Math. Biosci., 2022, 350, 108856. · Zbl 1497.92356
[4] G. Bian, Y. Xu, P. Lu, Y. Xie and Z. Xi, The endosymbiotic bacterium Wol-bachia Induces Resistance to Dengue Virus in Aedes aegypti, PLoS Pathog., 2010, 6(4), e1000833.
[5] L. Cai, S. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 2014, 74(6), 1786-1809. · Zbl 1320.34071
[6] B. Caputo, R. Moretti, M. Manica, P. Serini, E. Lampazzi, et al., A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area, Pest. Manag. Sci., 2020, 76(4), 1324-1332.
[7] E. Caspari and G. S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitoes, Evolution, 1959, 13(4), 568-570.
[8] H. L. C. Dutra, M. N. Rocha, F. B. S. Dias, S. B. Mansur, E. P. Caragata, et al., Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti Mosquitoes, Cell Host & Microbe, 2016, 19(6), 771-774.
[9] J. Z. Farkas and P. Hinow, Structured and unstructured continuous models for Wolbachia infections, Bull. Math. Biol., 2010, 72(8), 2067-2088. · Zbl 1201.92044
[10] R. Gato, Z. Menéndez, E. Prieto, R. Argilés, M. Rodríguez, et al., Sterile insect technique: successful suppression of an aegypti field population in Cuba, Insects, 2021, 12(5), 469.
[11] J. Guo, X. Zheng, D. Zhang and Y. Wu, Current status of mosquito handling, transporting and releasing in frame of the sterile insect technique, Insects, 2022, 13(6), 532.
[12] M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Sys-tems, and an Introduction to Chaos, Academic Press, Orlando, 2003.
[13] L. Hu, M. Huang, M. Tang, J. Yu and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 2015, 106, 32-44. · Zbl 1343.92482
[14] M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theoret. Biol., 2018, 440, 1-11. · Zbl 1400.92490
[15] M. J. Keeling, F. M. Jiggins and J. M. Read, The invasion and coexistence of competing Wolbachia strains, Heredity, 2003, 91(4), 382-388.
[16] P. Kittayapong, S. Ninphanomchai, W. Limohpasmanee, C. Chansang, U. Chansang, et al., Combined sterile insect technique and incompatible insect technique: the first proof-of-concept to suppress Aedes aegypti vector popula-tions in semi-rural settings in Thailand, PLoS Negl. Trop. Dis., 2019, 13(10), e0007771.
[17] J. L. Kyle and E. Harris, Global spread and persistence of dengue, Annu. Rev. Microbiol., 2008, 62, 71-92.
[18] J. Li, Malaria model with stage-structured mosquitoes, Math. Biosci. Eng., 2011, 8(3), 753-768. · Zbl 1260.92060
[19] J. Li, Simple mathematical models for interacting wild and transgenic mosquito populations, Math. Biosci., 2004, 189(1), 39-59. · Zbl 1072.92053
[20] J. Li, L. Cai and Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol. Dyn., 2016, 11(1), 79-101. · Zbl 1448.92219
[21] Y. Li and X. Liu, A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population, J. Theoret. Biol., 2018, 448, 53-65. · Zbl 1397.92647
[22] Y. Liu, F. Jiao and L. Hu, Modeling mosquito population control by a coupled system, J. Math. Anal. Appl., 2022, 506(2), 125671. · Zbl 1472.92263
[23] J. W. Mains, C. L. Brelsfoard, R. L. Rose and S. L. Dobson, Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes, Sci. Rep., 2016, 6, 33846.
[24] J. W. Mains, P. H. Kelly, K. L. Dobson, W. D. Petrie and S. L. Dobson, Localized control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via inundative releases of Wolbachia-infected male mosquitoes, J. Med. Entomol., 2019, 56(5), 1296-1303.
[25] E. E. Ooi, K. T. Goh and D. J. Gubler, Dengue prevention and 35 years of vector control in Singapore, Emerg. Infec. Dis., 2006, 12(6), 887-893.
[26] D. Pagendam, N. Snoad, W. Yang, M. Segoli, S. Ritchie, et al., Improving estimates of Fried’s index from mating competitiveness experiments, J. Agric. Biol. Environ. Stat., 2018, 23(4), 446-462. · Zbl 1426.62324
[27] M. A. Tolle, Mosquito-borne diseases, Curr. Probl. Pediatr. Adolesc. Health Care, 2009, 39(4), 97-140.
[28] World Health Organization, Health topics-Dengue and severe dengue, 2021. https://www.who.int/health-topics/dengue-and-severe-dengue# tab=tab_1.
[29] World Mosquito Program, Mosquito-borne diseases. Available at https://www. worldmosquitoprogram.org/en/learn/mosquito-borne-diseases.
[30] J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differential Equations, 2020, 269(12), 10395-10415. · Zbl 1457.34084
[31] J. Yu and J. Li, A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol., 2022, 84(3), 14. · Zbl 1489.34120
[32] J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 2019, 13(1), 606-620. · Zbl 1448.92260
[33] J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differential Equations, 2020, 269(7), 6193-6215. · Zbl 1444.34103
[34] J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Difference Equ. Appl., 2019, 25(11), 1549-1567. · Zbl 1536.92156
[35] X. Zhang, Q. Liu and H. Zhu, Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control, J. Math. Biol., 2020, 81(1), 1-34. · Zbl 1448.34106
[36] Z. Zhang and B. Zheng, Dynamics of a mosquito population suppression model with a saturated Wolbachia release rate, Appl. Math. Lett., 2022, 129, 107933. · Zbl 1492.92138
[37] B. Zheng, J. Li and J. Yu, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., 2021, 65(8), 1749-1764. · Zbl 1497.92333
[38] B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 2014, 74(3), 743-770. · Zbl 1303.92124
[39] B. Zheng and J. Yu, At most two periodic solutions for a switching mosquito population suppression model, J. Dynam. Differential Equations, 2022. https: //doi.org/10.1007/s10884-021-10125-y. · Zbl 1529.34051 · doi:10.1007/s10884-021-10125-y
[40] B. Zheng and J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 2022, 11(1), 212-224. · Zbl 1471.92396
[41] B. Zheng, J. Yu, Z. Xi and M. Tang, The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 2018, 387(10), 38-48.
[42] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 2019, 572(7767), 56-61.
[43] D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, R. Jeremie and L. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus, PLoS One, 2015, 10(4), e0121126.
[44] Z. Zhu, Y. Shi, R. Yan and L. Hu, Periodic orbits of a mosquito suppression model based on sterile mosquitoes, Mathematics, 2022, 10(3), 462.
[45] Z. Zhu, R. Yan and X. Feng, Existence and stability of two periodic solutions for an interactive wild and sterile mosquitoes model, J. Biol. Dyn., 2022, 16(1), 277-293. · Zbl 1490.92060
[46] Z. Zhu, B. Zheng, Y. Shi, R. Yan and J. Yu, Stability and periodicity in a mosquito population suppression model composed of two sub-models, Nonlinear Dyn., 2022, 107(1), 1383-1395. · Zbl 1517.92021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.