×

At most two periodic solutions for a switching Mosquito population suppression model. (English) Zbl 1529.34051

Summary: We fill a gap concerning a dynamical description for a switching mosquito population suppression model proposed in [J. Yu and J. Li, J. Differ. Equations 269, No. 7, 6193–6215 (2020; Zbl 1444.34103)], where a constant amount \(c\) of sterile mosquitoes is released after a waiting period \(T\) larger than the sexual lifespan \({\bar{T}}\) of the released male mosquitoes. The release amount thresholds \(g^\ast, c^\ast\) with \(g^\ast<c^\ast\) and the waiting period threshold \(T^\ast\) were found, and it was proved that the origin is locally asymptotically stable in \(D=\{(c, T): g^\ast<c<c^\ast,\, T<T^\ast\}\). However, the periodic solutions as well as the global asymptotical stability of the origin remains unknown. By ingeniously finding a useful separatrix \(L\) which can divide \(D\) into two sub-regions \(D_1\) and \(D_2\), we show that the origin is globally asymptotically stable in \(D_1\), and the model admits exactly two periodic solutions in \(D_2\), with one stable, and the other unstable, and a unique periodic solution on \(L\), which is semi-stable, respectively. Numerical examples to illustrate our theoretical results are also provided.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
92D25 Population dynamics (general)
92D45 Pest management
34A36 Discontinuous ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
34C25 Periodic solutions to ordinary differential equations

Citations:

Zbl 1444.34103
Full Text: DOI

References:

[1] Baldacchino, F.; Caputo, B.; Chandre, F.; Drago, A.; Alessandra, T.; Montarsi, F., Control methods against invasive Aedes mosquitoes in Europe: a review, Pest Manag. Sci., 71, 1471-1485 (2015) · doi:10.1002/ps.4044
[2] Bhatt, S.; Gething, PW; Brady, OJ; Messina, JP; Farlow, AW; Moyes, CL, The global distribution and burden of dengue, Nature, 496, 504-507 (2013) · doi:10.1038/nature12060
[3] Boyer, S.; Gilles, J.; Merancienne, D.; Lemperiere, G.; Fontenille, D., Sexual performance of male mosquito Aedes albopictus, Med. Vet. Entomol., 25, 454-459 (2011) · doi:10.1111/j.1365-2915.2011.00962.x
[4] Cai, L.; Ai, S.; Li, J., Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74, 1786-1809 (2014) · Zbl 1320.34071 · doi:10.1137/13094102X
[5] Cai, L.; Ai, S.; Fan, G., Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math. Biosci. Eng., 15, 1181-1202 (2018) · Zbl 1406.92490 · doi:10.3934/mbe.2018054
[6] Coutinho-Abreu, IV; Zhu, KY; Ramalho-Ortigao, M., Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges, Parasitol. Int., 59, 1, 1-8 (2010) · doi:10.1016/j.parint.2009.10.002
[7] Dyck, V.A., Hendrichs, J.P., Robinson, A.S.: Sterile insect technique: principles and practice in area-wide integrated pest management. N. Agric. (2005)
[8] Hirsch, MW; Smale, S.; Devaney, RL, Differential Equations, Dynamical Systems, and an Introduction to Chaos (2007), Cambridge: Academic Press, Cambridge · Zbl 1239.37001
[9] Hoffmann, AA; Montgomery, BL; Popovici, J.; Iturbe-Ormaetxe, I.; Johnson, PH; Muzzi, F., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476, 454-457 (2011) · doi:10.1038/nature10356
[10] Hurwitz, I.; Fieck, A.; Read, A.; Hillesland, H.; Klein, N.; Kang, A., Paratransgenic control of vector borne diseases, Int. J. Biol. Sci., 7, 1334-1344 (2011) · doi:10.7150/ijbs.7.1334
[11] Li, J., Differential equations models for interacting wild and transgenic mosquito populations, J. Biol. Dyn., 2, 241-258 (2008) · Zbl 1165.34027 · doi:10.1080/17513750701779633
[12] Li, J.; Han, M.; Yu, J., Simple paratransgenic mosquitoes models and their dynamics, Math. Biosci., 306, 20-31 (2018) · Zbl 1411.34067 · doi:10.1016/j.mbs.2018.10.005
[13] O’Neill, S.L.: The Use of Wolbachia by the world mosquito program to interrupt transmission of Aedes aegypti transmitted viruses. In: Hilgenfeld R., Vasudevan S. (eds) Dengue and Zika: Control and Antiviral Treatment Strategies Advances in Experimental Medicine and Biology, vol 1062, pp. 355-360. Springer, Singapore (2018)
[14] Rasgon, JL, Multi-locus assortment (MLA) for transgene dispersal and elimination in mosquito populations, PLOS ONE, 4, e5833 (2009) · doi:10.1371/journal.pone.0005833
[15] Turelli, M., Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64, 232-241 (2010) · doi:10.1111/j.1558-5646.2009.00822.x
[16] Walker, T.; Johnson, PH; Moreira, LA; Iturbe-Ormaetxe, I.; Frentiu, FD; McMeniman, CJ, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476, 450-453 (2011) · doi:10.1038/nature10355
[17] Yu, J., Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78, 3168-3187 (2018) · Zbl 1401.92171 · doi:10.1137/18M1204917
[18] Yu, J.; Li, J., Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13, 606-620 (2019) · Zbl 1448.92260 · doi:10.1080/17513758.2019.1682201
[19] Yu, J.; Zheng, B., Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Differ. Equ. Appl., 25, 1549-1567 (2019) · Zbl 1536.92156 · doi:10.1080/10236198.2019.1669578
[20] Yu, J.; Li, J., Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equ., 269, 6193-6215 (2020) · Zbl 1444.34103 · doi:10.1016/j.jde.2020.04.036
[21] Yu, J., Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equ., 269, 10395-10415 (2020) · Zbl 1457.34084 · doi:10.1016/j.jde.2020.07.019
[22] Zheng, B.; Tang, M.; Yu, J., Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74, 743-770 (2014) · Zbl 1303.92124 · doi:10.1137/13093354X
[23] Zheng, B.; Yu, J.; Xi, Z.; Tang, M., The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 387, 38-48 (2018) · doi:10.1016/j.ecolmodel.2018.09.004
[24] Zheng, B.; Liu, X.; Tang, M.; Xi, Z.; Yu, J., Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control, J. Theoret. Biol., 472, 95-109 (2019) · Zbl 1412.92180 · doi:10.1016/j.jtbi.2019.04.010
[25] Zheng, B.; Yu, J.; Li, J., Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math., 81, 2, 718-740 (2021) · Zbl 1468.34074 · doi:10.1137/20M1368367
[26] Zheng, B.; Yu, J., Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 11, 212-224 (2022) · Zbl 1471.92396 · doi:10.1515/anona-2020-0194
[27] Zheng, B., Li, J., Yu, J.: One discrete dynamical model on Wolbachia infection frequency in mosquito populations. Sci. China Math. (2021). doi:10.1007/s11425-021-1891-7
[28] Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572, 56-61 (2019) · doi:10.1038/s41586-019-1407-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.