×

Modeling Wolbachia infection in mosquito population via discrete dynamical models. (English) Zbl 1536.92156

Summary: We formulate discrete dynamical models to study Wolbachia infection persistence by releasing Wolbachia-infected mosquitoes, which display rich dynamics including bistable, semi-stable and globally asymptotically stable equilibria. Our analysis shows a maximal maternal leakage rate threshold, denoted by \(\mu^*\), such that infected mosquitoes can only persist if it is not exceeded by \(\mu^*\). When \(\mu\leq \mu^*\), we find the Wolbachia infection frequency threshold, denoted by \(p^*\), such that the infected mosquitoes can persist provided that the initial infection frequency \(x_0\geq p^*\). For the case when \(x_0<p^*\), we find the release rate threshold, denoted by \(\alpha^*\), for \(\alpha\in(0,\alpha^*)\), the Wolbachia infection frequency threshold is reduced, and for \(\alpha\geq\alpha^*\), the threshold infection frequency is further lowered to 0 which implies that Wolbachia persistence is always successful for any initial infection frequency above 0.

MSC:

92D30 Epidemiology
Full Text: DOI

References:

[1] Aida, H. N.; Dieng, H.; Satho, T.; Nurita, A.; Salmah, M. C.; Miake, F.; Norasmah, B.; Ahmad, A. H., The biology and demographic parameters of Aedes albopictus in northern peninsular Malaysia, Asian Pac. J. Trop. Biomed., 1, 6, 472-477 (2011) · doi:10.1016/S2221-1691(11)60103-2
[2] Baldacchino, F.; Caputo, B.; Chandre, F.; Drago, A.; Della Torre, A.; Montarsi, F.; Rizzoli, A., Control methods against invasive Aedes mosquitoes in Europe: A review, Pest Manag. Sci., 71, 1471-1485 (2015) · doi:10.1002/ps.4044
[3] Bian, G.; Joshi, D.; Dong, Y.; Lu, P.; Zhou, G.; Pan, X.; Xu, Y.; Dimopoulos, G.; Xi, Z., Wolbachia invades Anopheles stephensi populations and induces refractoriness to plasmodium infection, Science, 340, 748-751 (2013) · doi:10.1126/science.1236192
[4] Caspari, E.; Watson, G. S., On the evolutionary importance of cytoplasmic sterility in mosquitoes, Evolution, 13, 568-570 (1959) · doi:10.1111/j.1558-5646.1959.tb03045.x
[5] Dobson, S. L.; Ratthanadechakul, W., A novel technique for removing Wolbachia infections from Aedes albopictus (Diptera: Culicidae), J. Med. Entomol., 38, 844-849 (2001) · doi:10.1603/0022-2585-38.6.844
[6] Estrada-Franco, R. and Craig, G., Biology, disease relationship and control of Aedes albopictus, Tech. Paper No. 42, Pan American Health Organization, Washington, DC, 1995.
[7] Hamm, C. A.; Begun, D. J.; Vo, A.; Smith, C. C.R.; Saelao, P.; Shaver, A. O.; Jaenike, J.; Turelli, M., Wolbachia do not live by reproductive manipulation alone: Infection polymorphism in Drosophila suzukii and D subpulchrella, Mol. Ecol., 23, 4871-4885 (2014) · doi:10.1111/mec.12901
[8] Hawley, W., The biology of Aedes albopictus, J. Am. Mosq. Control Assoc., 1, 1-39 (1988)
[9] Hoffmann, A.; Turelli, M.; Harshman, L., Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans, Genetics, 126, 933-948 (1990)
[10] Hoffmann, A. A.; Montgomery, B. L.; Popovici, J.; Iturbe-Ormaetxe, I.; Johnson, P. H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y. S.; Dong, Y.; Cook, H.; Axford, J.; Callahan, A. G.; Kenny, N.; Omodei, C.; Mcgraw, E. A.; Ryan, P. A.; Ritchie, S. A.; Turelli, M.; O’Neill, S. L., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476, 454-457 (2011) · doi:10.1038/nature10356
[11] Hu, L.; Huang, M.; Tang, M.; Yu, J.; Zheng, B., Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106, 32-44 (2015) · Zbl 1343.92482 · doi:10.1016/j.tpb.2015.09.003
[12] Huang, M.; Tang, M.; Yu, J., Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58, 77-96 (2015) · Zbl 1337.35156 · doi:10.1007/s11425-014-4934-8
[13] Huang, M.; Yu, J.; Hu, L.; Zheng, B., Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59, 1249-1266 (2016) · Zbl 1344.35156 · doi:10.1007/s11425-016-5149-y
[14] Kriesner, P.; Hoffmann, A. A.; Lee, S. F.; Turelli, M.; Weeks, A. R., Rapid sequential spread of two Wolbachia variants in Drosophila simulans, PLoS Pathog., 9, 9, e1003607 (2013) · doi:10.1371/journal.ppat.1003607
[15] Li, J., Simple discrete-time malarial models, J. Differ. Equ. Appl., 19, 4, 649-666 (2013) · Zbl 1262.39020 · doi:10.1080/10236198.2012.672566
[16] Li, Y.; Li, J., Discrete-time models for releases of sterile mosquitoes with Beverton-Holt-type of survivability, Ricerche Mat., 2018, 1-22 (2018) · Zbl 1393.37099
[17] Li, J.; Yuan, Z., Modelling releases of sterile mosquitoes with different strategies, J. Biol. Dyn., 9, 1, 1-14 (2015) · Zbl 1448.92220 · doi:10.1080/17513758.2014.977971
[18] Mcmeniman, C. J.; Lane, R. V.; Cass, B. N.; Fong, A. W.C.; Sidhu, M.; Wang, Y. F.; O’Neill, S. L., Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypi, Science, 323, 141-144 (2009) · doi:10.1126/science.1165326
[19] Mercot, H.; Poinsot, D., Infection by Wolbachia: From passengers to residents, C. R. Biol., 332, 2, 284-297 (2009) · doi:10.1016/j.crvi.2008.09.010
[20] Popovici, J.; Moreira, L. A.; Poinsignon, A.; Iturbe-Ornaetxe, I.; Mcnaughton, D.; O’Neill, S. L., Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes, Memórias do Instituto Oswaldo Cruz, 105, 8, 957-964 (2010) · doi:10.1590/S0074-02762010000800002
[21] Saridaki, A.; Bourtzis, K., Wolbachia: More than just a bug in insects genitals, Curr. Opin. Microbiol., 13, 67-72 (2010) · doi:10.1016/j.mib.2009.11.005
[22] Schwartz, L.; Elizabeth, H. M.; Durbin, A.; Longini Jr, I., The dengue vaccine pipeline: Implications for the future of dengue control, Vaccine, 33, 3293-3298 (2015) · doi:10.1016/j.vaccine.2015.05.010
[23] Somwang, P.; Yanola, J.; Suwan, W.; Walton, C.; Lumjuan, N.; Prapanthadara, L.; Somboon, P., Enzymes-based resistant mechanism in pyrethroid resistant and susceptible Aedes aegypti strains from northern Thailand, Parasitol. Res., 109, 3, 531-537 (2011) · doi:10.1007/s00436-011-2280-0
[24] Turelli, M., Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64, 232-241 (2010) · doi:10.1111/j.1558-5646.2009.00822.x
[25] Turelli, M.; Hoffmann, A., Rapid spread of an inherited incompatibility factor in California Drosophila, Nature, 353, 440-442 (1991) · doi:10.1038/353440a0
[26] Turelli, M.; Hoffmann, A., Cytoplasmic incompatibility in Drosophila simulans: Dynamics and parameter estimates from natural populations, Genetics, 140, 1319-1338 (1995)
[27] Walker, T.; Johnson, P. H.; Moreira, L. A.; Iturbe-Ormaetxe, I.; Frentiu, F. D.; Mcmeniman, C. J.; Leong, Y. S.; Dong, Y.; Axford, J.; Kriesner, P.; Lloyd, A. L.; Ritchie, S. A.; O’Neill, S. L.; Hoffmann, A. A., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476, 450-453 (2011) · doi:10.1038/nature10355
[28] Waltz, E., US reviews plan to infect mosquitoes with bacteria to stop disease, Nature, 533, 450-451 (2016) · doi:10.1038/533450a
[29] Wang, Y.; Liu, X.; Li, C.; Su, T.; Jin, J.; Guo, Y.; Ren, D.; Yang, Z.; Liu, Q.; Fengxia, M., A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China J. Econ. Entomol., 110, 1, 239-244 (2017)
[30] Werren, J. H., Biology of Wolbachia, Ann. Rev. Entomol., 42, 587-609 (1997) · doi:10.1146/annurev.ento.42.1.587
[31] , Dengue Situation Update 453, December 2014. Available at.
[32] Xi, Z.; Khoo, C. C.; Dobson, S. L., Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310, 326-328 (2005) · doi:10.1126/science.1117607
[33] Xi, Z.; Khoo, C. C.; Dobson, S. L., Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus, Proc. Biol. Sci., 273, 1317-1322 (2006) · doi:10.1098/rspb.2005.3405
[34] Yu, J., Modeling mosquitoes population suppression based on delay differential equations, SIAM J. Appl. Math., 78, 6, 3168-3187 (2018) · Zbl 1401.92171 · doi:10.1137/18M1204917
[35] Zhang, D.; Lees, R. S.; Xi, Z.; Bourtzis, K.; Gilles, J. R.L., Combining the sterile insect technique with the incompatible insect technique: II-A safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release, PLoS ONE, 10, e1427 (2015)
[36] Zheng, B.; Tang, M.; Yu, J., Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74, 3, 743-770 (2014) · Zbl 1303.92124 · doi:10.1137/13093354X
[37] Zheng, B.; Yu, J.; Xi, Z.; Tang, M., The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 387, 38-48 (2018) · doi:10.1016/j.ecolmodel.2018.09.004
[38] Zheng, B.; Tang, M.; Yu, J.; Qiu, J., Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76, 1-2, 235-263 (2018) · Zbl 1392.92113 · doi:10.1007/s00285-017-1142-5
[39] Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; Wang, X.; Wei, Y.; Zhu, J.; Qian, W.; Yan, Z.; Parker, A. G.; Gilles, J. R.L.; Bourtzis, K.; Bouyer, J.; Tang, M.; Zheng, B.; Yu, J.; Liu, J.; Zhuang, J.; Hu, Z.; Zhang, M.; Gong, J.-T.; Hong, X.-Y.; Zhang, Z.; Lin, L.; Liu, Q.; Hu, Z.; Wu, Z.; Baton, L. A.; Hoffmann, A. A.; Xi, Z., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572, 56-61 (2019) · doi:10.1038/s41586-019-1407-9
[40] Zheng, B.; Liu, X.; Tang, M.; Xi, Z.; Yu, J., Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control, J. Theor. Biol., 472, 95-109 (2019) · Zbl 1412.92180 · doi:10.1016/j.jtbi.2019.04.010
[41] Zhou, W.; Rousset, F.; O’Neill, R. J., Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proc. R. Soc. Lond. B, 265, 509-515 (1998) · doi:10.1098/rspb.1998.0324
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.