×

Normalized solutions for Schrödinger equations with mixed dispersion and critical exponential growth in \(\mathbb{R}^2\). (English) Zbl 1528.35036

Summary: By developing new mathematical strategies and analytical techniques, we prove the existence of normalized ground states for the following Schrödinger equation with mixed dispersion: \[ \begin{cases} -\Delta u + \lambda u = \mu|u|^{p-2}u + (e^{u^2} - 1 - u^2) u, & x\in\mathbb{R}^2, \\ \int_{{\mathbb{R}}^2}u^2\mathrm{d}x = c, \end{cases} \] where \(c > 0\), \(\lambda\in\mathbb{R}\), \(p\) is allowed to be \(L^2\)-subcritical \(2 < p < 4\), \(L^2\)-critical \(p=4\) or \(L^2\)-supercritical \(4 < p < +\infty\), and the mixed nonlinearity has critical exponential growth of Trudinger-Moser type which is a novelty for \(L^2\)-constrained problems. To restore the compactness, some ingenious analyses and sharp energy estimates are introduced. Our study achieves a significant extension from the Sobolev critical growth for the higher dimensions to the critical exponential growth for the planar dimension in the context of normalized solutions, and seems to be the first contribution in this direction. We believe that our approaches may be adapted and modified to attack more planar \(L^2\)-constrained problems with critical exponential growth, and hope to stimulate further research on this topic like that by N. Soave [J. Funct. Anal. 279, No. 6, Article ID 108610, 42 p. (2020; Zbl 1440.35311)].

MSC:

35J10 Schrödinger operator, Schrödinger equation
35J61 Semilinear elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs

Citations:

Zbl 1440.35311
Full Text: DOI

References:

[1] Adachi, S.; Tanaka, K., Trudinger type inequalities in \(\varvec{R}^N\) and their best exponents, Proc. Am. Math. Soc., 128, 2051-2057 (2000) · Zbl 0980.46020 · doi:10.1090/S0002-9939-99-05180-1
[2] Adimurthi, Yadava, S.L.: Multiplicity results for semilinear elliptic equations in a bounded domain of \({ R}^2\) involving critical exponents. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17, 481-504 (1990) · Zbl 0732.35029
[3] Alves, CO; Germano, GF, Ground state solution for a class of indefinite variational problems with critical growth, J. Differ. Equ., 265, 444-477 (2018) · Zbl 1394.35151 · doi:10.1016/j.jde.2018.02.039
[4] Alves, C.O., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R}}^N\), Calc. Var. Partial Differ. Equ. 61, 18, 24 (2022) · Zbl 1481.35141
[5] Bellazzini, J.; Jeanjean, L.; Luo, T., Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107, 303-339 (2013) · Zbl 1284.35391 · doi:10.1112/plms/pds072
[6] Berestycki, H.; Lions, P-L, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal, 82, 313-345 (1983) · Zbl 0533.35029 · doi:10.1007/BF00250555
[7] Berestycki, H.; Lions, PL, Nonlinear scalar field equations II, existence of infinitely many solutions, Arch. Rat. Mech. Anal., 82, 347-375 (1983) · Zbl 0556.35046 · doi:10.1007/BF00250556
[8] Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({ R}^2\). Commun. Partial Differ. Equ. 17, 407-435 (1992) · Zbl 0763.35034
[9] Cassani, D.; Sani, F.; Tarsi, C., Equivalent Moser type inequalities in \({\mathbb{R} }^2\) and the zero mass case, J. Funct. Anal., 267, 4236-4263 (2014) · Zbl 1314.46039 · doi:10.1016/j.jfa.2014.09.022
[10] Chang, X., Liu, M., Yan, D.: Normalized ground state solutions of nonlinear Schrödinger equations involving exponential critical growth. J. Geom. Anal. 33, Paper No. 83, 20 (2023) · Zbl 1506.35046
[11] Chen, S., Tang, X.: Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth. J. Differ. Equ. 269, 9144-9174 (2020) · Zbl 1448.35160
[12] Chen, S., Tang, X.: New approaches for schrödinger equations with prescribed mass: the Sobolev subcritical case and the sobolev critical case with mixed dispersion, eprint arXiv: 2210.14503
[13] Chen, S., Shu, M., Tang, X., Wen, L.: Planar Schrödinger-Poisson system with critical exponential growth in the zero mass case. J. Differ. Equ. 327, 448-480 (2022) · Zbl 1490.35134
[14] de Figueiredo, DG; Miyagaki, OH; Ruf, B., Elliptic equations in \({ R}^2\) with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ., 3, 139-153 (1995) · Zbl 0820.35060 · doi:10.1007/BF01205003
[15] Gagliardo, E., Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 7, 102-137 (1958) · Zbl 0089.09401
[16] Ghoussoub, N.: Duality and perturbation methods in critical point theory, vol. 107 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993, with appendices by David Robinson · Zbl 0790.58002
[17] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 1633-1659 (1997) · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[18] Jeanjean, L.; Jendrej, J.; Le, TT; Visciglia, N., Orbital stability of ground states for a Sobolev critical Schrödinger equation, J. Math. Pures Appl., 9, 164, 158-179 (2022) · Zbl 1537.35324 · doi:10.1016/j.matpur.2022.06.005
[19] Jeanjean, L.; Le, TT, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann., 384, 1-2, 101-134 (2022) · Zbl 1497.35433 · doi:10.1007/s00208-021-02228-0
[20] Jeanjean, L., Lu, S.-S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Eqs. 59 (5) Paper No. 174, 43 (2020) · Zbl 1453.35087
[21] Li, X.: Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities, Calc. Var. Partial Differ. Eqs. 60(5), Paper No. 169, 14 (2021) · Zbl 1473.35297
[22] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1, 145-201 (1985) · Zbl 0704.49005
[23] Moser, J.: A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20, 1077-1092 (1970/71) · Zbl 0213.13001
[24] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3, 13, 115-162 (1959) · Zbl 0088.07601
[25] Soave, N., Normalized ground states for the NLS equation with combined nonlinearities, J. Differ Equ., 269, 6941-6987 (2020) · Zbl 1440.35312 · doi:10.1016/j.jde.2020.05.016
[26] Soave, N., Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279, 43 (2020) · Zbl 1440.35311 · doi:10.1016/j.jfa.2020.108610
[27] Strauss, WA, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[28] Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré C Anal. Non Linéaire 9, 281-304 (1992) · Zbl 0785.35046
[29] Trudinger, NS, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-483 (1967) · Zbl 0163.36402
[30] Wei, J., Wu, Y.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283(6), Paper No. 109574 (2022) · Zbl 1500.35114
[31] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24 (1996), Boston: Birkhäuser Boston Inc., Boston · Zbl 0856.49001
[32] Zhang, N., Tang, X., Chen, S.: Mountain-pass type solutions for the Chern-Simons-Schrödinger equation with zero mass potential and critical exponential growth. J. Geom. Anal. 33(12) (2023) · Zbl 1501.35198
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.