×

Mountain-pass type solutions for the Chern-Simons-Schrödinger equation with zero mass potential and critical exponential growth. (English) Zbl 1501.35198

Summary: In this paper, we consider the non-linear Chern-Simons-Schrödinger equation \[ -\Delta u+\left(\frac{h_u^2(|x|)}{|x|^2}+\int^{\infty }_{|x|} \frac{h_u(s)}{s}u^2(s){\text{d}}s\right) u=-a|u|^{p-2}u+f(u),\,\, x\in \mathbb{R}^2, \] where \(a>0\), \(p\in (2,3)\) and \[ h_u(s)=\int^s_0\frac{\tau }{2}u^2(\tau )d\tau =\frac{1}{4\pi }\int_{B_s}u^2(x){\text{d}}x \] is the so-called Chern-Simons term, \(f: \mathbb{R}\rightarrow \mathbb{R}\) has critical exponential growth which behaves like \(e^{\alpha u^2}\). We establish a new version of Trudinger-Moser inequality in the working space \[E:=\left\{ u: u(x)=u(|x|), \int_{\mathbb{R}^2}|\nabla u|^2\text{d}x<\infty , \int_{\mathbb{R}^2}|u|^p\text{d}x<\infty \right\}\]of the associated with the energy functional related to the above equation, and prove that the energy functional is well-defined in \(E\). By combining the variational methods, Trudinger-Moser inequality and some new approaches to estimate precisely the minimax level of the energy functional, we prove the existence of a mountain-pass type solution for the above equation under some weak assumptions.

MSC:

35J61 Semilinear elliptic equations
35B33 Critical exponents in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Agueh, M., Sharp Gagliardo-Nirenberg inequalities and mass transport theory, J. Dynam. Differ. Equ., 18, 1069-1093 (2006) · Zbl 1155.35320 · doi:10.1007/s10884-006-9039-9
[2] Byeon, J.; Huh, H.; Seok, J., Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263, 1575-1608 (2012) · Zbl 1248.35193 · doi:10.1016/j.jfa.2012.05.024
[3] Byeon, J.; Huh, H.; Seok, J., On standing waves with a vortex point of order \(N\) for the nonlinear Chern-Simons-Schrödinger equations, J. Differ. Equ., 261, 1285-1316 (2016) · Zbl 1342.35321 · doi:10.1016/j.jde.2016.04.004
[4] Chen, ST; Tang, XH, Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth, J. Differ. Equ., 269, 9144-9174 (2020) · Zbl 1448.35160 · doi:10.1016/j.jde.2020.06.043
[5] Chen, ST; Tang, XH, On the planar Schrödinger equation with indefinite linear part and critical growth nonlinearity, Calc. Var. Part. Differ. Equ., 60, 95 (2021) · Zbl 1465.35133 · doi:10.1007/s00526-021-01963-1
[6] Chen, ST; Tang, XH; Wei, JY, Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys., 72, 38 (2021) · Zbl 1466.35184 · doi:10.1007/s00033-020-01455-w
[7] Chen, ST; Tang, XH; Yuan, S., On the Chern-Simons-Schrödinger equation with critical exponential growth, Acta Math. Sin. (Engl. Ser.), 37, 1875-1895 (2021) · Zbl 1481.35142 · doi:10.1007/s10114-021-0534-z
[8] de Figueiredo, DG; Miyagaki, OH; Ruf, B., Elliptic equations in \({ R}^2\) with nonlinearities in the critical growth range, Calc. Var. Part. Differ. Equ., 3, 139-153 (1995) · Zbl 0820.35060
[9] Huh, H., Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012) · Zbl 1276.81053 · doi:10.1063/1.4726192
[10] Jackiw, R.; Pi, SY, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64, 2969-2972 (1990) · Zbl 1050.81526 · doi:10.1103/PhysRevLett.64.2969
[11] Jackiw, R.; Pi, SY, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42, 3500-3513 (1990) · doi:10.1103/PhysRevD.42.3500
[12] Jeanjean, L., On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on \(\mathbb{R}^N\), Proc. R. Soc. Edinb. A, 129, 787-809 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[13] Ji, C.; Fang, F., Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450, 578-591 (2017) · Zbl 1364.35296 · doi:10.1016/j.jmaa.2017.01.065
[14] Jiang, Y.; Pomponio, A.; Ruiz, D., Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18, 1550074 (2016) · Zbl 1341.35150 · doi:10.1142/S0219199715500741
[15] Li, GB; Luo, X., Normalized solutions for the Chern-Simons-Schrödinger equation in \(\mathbb{R}^2 \), Ann. Acad. Sci. Fenn. Math., 42, 405-428 (2017) · Zbl 1372.35100 · doi:10.5186/aasfm.2017.4223
[16] Lin, XY; Tang, XH, Mountain-pass type solutions for the Chern-Simons-Schrödinger equation with critical exponential growth, Complex Var. Elliptic Equ. (2022) · Zbl 1512.35274 · doi:10.1080/17476933.2021.2009818
[17] Liu, B.; Smith, P., Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32, 751-794 (2016) · Zbl 1352.35161 · doi:10.4171/RMI/898
[18] Lions, PL, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoam., 1, 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[19] Liu, B.; Smith, P.; Tataru, D., Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN, 23, 6341-6398 (2014) · Zbl 1304.35649 · doi:10.1093/imrn/rnt161
[20] Luo, X., Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation, Z. Angew. Math. Phys., 69, 58 (2018) · Zbl 1393.35024 · doi:10.1007/s00033-018-0952-7
[21] Mao, Y.; Wu, XP; Tang, CL, Existence and multiplicity of solutions for asymptotically 3-linear Chern-Simons-Schrödinger systems, J. Math. Anal. Appl., 498 (2021) · Zbl 1459.35134 · doi:10.1016/j.jmaa.2021.124939
[22] Papageorgiou, NS; Radulescu, VD; Repovs, DD, Nonlinear analysis-theory and methods. Springer monographs in mathematics (2019), Cham: Springer, Cham · Zbl 1414.46003
[23] Pomponio, A.; Ruiz, D., A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc. (JEMS), 17, 1463-1486 (2015) · Zbl 1328.35218 · doi:10.4171/JEMS/535
[24] Pomponio, A.; Ruiz, D., Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Part. Differ. Equ., 53, 289-316 (2015) · Zbl 1331.35326 · doi:10.1007/s00526-014-0749-2
[25] Pucci, P.; Letizia, T., On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng., 5, 1-21 (2023) · Zbl 1535.35194 · doi:10.3934/mine.2023007
[26] Shen, LJ, Ground state solutions for a class of gauged Schrödinger equations with subcritical and critical exponential growth, Math. Method Appl. Sci., 43, 536-551 (2020) · Zbl 1445.35142 · doi:10.1002/mma.5905
[27] Tang, XH; Chen, ST, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Discrete Contin. Dyn. Syst., 37, 4973-5002 (2017) · Zbl 1371.35051 · doi:10.3934/dcds.2017214
[28] Tang, XH; Chen, ST, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Part. Differ. Equ., 56, 1-25 (2017) · Zbl 1376.35056 · doi:10.1007/s00526-017-1214-9
[29] Tang, XH; Zhang, J.; Zhang, W., Existence and concentration of solutions for the Chern-Simons-Schrödinger system with general nonlinearity, Results Math., 71, 643-655 (2017) · Zbl 1376.35026 · doi:10.1007/s00025-016-0553-8
[30] Tuhina, M.; Pucci, P.; Xiang, MQ, Combined effects of singular and exponential nonlinearities in fractional Kirchhoff problems, Discrete Contin. Dyn. Syst., 42, 163-187 (2022) · Zbl 1483.35094 · doi:10.3934/dcds.2021111
[31] Wan, YY; Tan, JG, Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition, J. Math. Anal. Appl., 415, 422-434 (2014) · Zbl 1314.35174 · doi:10.1016/j.jmaa.2014.01.084
[32] Willem, M., Minimax theorems, prgress in nonlinear differential equations and their applications (1996), Boston: Birkhäuser Boston Inc., Boston · Zbl 0856.49001
[33] Zhang, J.; Zhang, W., Semiclassical states for coupled nonlinear Schrödinger system with competing potentials, J. Geom. Anal., 32, 114 (2022) · Zbl 1484.35189 · doi:10.1007/s12220-022-00870-x
[34] Zhang, J.; Zhang, W.; Tang, X., Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst., 37, 4565-4583 (2017) · Zbl 1370.35111 · doi:10.3934/dcds.2017195
[35] Zhang, J.; Zhang, W.; Xie, X., Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 88, 21-27 (2019) · Zbl 1411.35098 · doi:10.1016/j.aml.2018.08.007
[36] Zhang, N.; Tang, XH; Chen, Z.; Qin, L., Ground state solutions for the Chern-Simons-Schrödinger equations with general nonlinearity, Complex Var. Elliptic Equ., 65, 8, 1394-1411 (2019) · Zbl 1454.35156 · doi:10.1080/17476933.2019.1667337
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.