×

Least energy sign-changing solutions for Kirchhoff-Poisson systems. (English) Zbl 1524.35220

Summary: The paper deals with the following Kirchhoff-Poisson systems: \[ \begin{cases} - ({1+b\int_{{\mathbb{R}}^3} { \vert \nabla u \vert^2\,dx}}) \Delta u+u+k(x)\phi u+\lambda \vert u \vert^{p-2}u=h(x) \vert u \vert^{q-2}u, & x\in{\mathbb{R}}^3, \\ -\Delta \phi =k(x)u^2, & x\in{\mathbb{R}}^3, \end{cases} \] where the functions \(k\) and \(h\) are nonnegative, \(0\le \lambda\), \(b; 2\le p\le 4< q<6\). Via a constraint variational method combined with a quantitative lemma, some existence results on one least energy sign-changing solution with two nodal domains to the above systems are obtained. Moreover, the convergence property of \(u_b\) as \(b \searrow 0\) is established.

MSC:

35J47 Second-order elliptic systems
35J50 Variational methods for elliptic systems
35J60 Nonlinear elliptic equations

References:

[1] Ambrosetti, A.: On Schrödinger-Poisson system. Milan J. Math. 76, 257-274 (2008) · Zbl 1181.35257 · doi:10.1007/s00032-008-0094-z
[2] Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391-404 (2008) · Zbl 1188.35171 · doi:10.1142/S021919970800282X
[3] Azzollini, A., Pornponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90-108 (2008) · Zbl 1147.35091 · doi:10.1016/j.jmaa.2008.03.057
[4] Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248, 521-543 (2010) · Zbl 1183.35109 · doi:10.1016/j.jde.2009.06.017
[5] Zhong, X., Tang, C.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in R \(3{\mathbb{R}}^3\). Nonlinear Anal., Real World Appl. 39, 166-184 (2018) · Zbl 1379.35071 · doi:10.1016/j.nonrwa.2017.06.014
[6] Batista, A.M., Furtado, M.F.: Positive and nodal solutions for a nonlinear Schrödinger-Poisson system with sign-changing potentials. Nonlinear Anal., Real World Appl. 39, 142-156 (2018) · Zbl 1379.35060 · doi:10.1016/j.nonrwa.2017.06.005
[7] Alves, C., Souto, M.: Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z. Angew. Math. Phys. 65, 1153-1166 (2014) · Zbl 1308.35262 · doi:10.1007/s00033-013-0376-3
[8] Chen, S., Tang, X.: Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in R \(3{\mathbb{R}}^3\). Z. Angew. Math. Phys. 67(4), 102 (2016) · Zbl 1362.35142 · doi:10.1007/s00033-016-0695-2
[9] Ianni, I.: Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 365-385 (2013) · Zbl 1330.35128
[10] Liu, Z., Wang, Z., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann. Math. 195, 775-794 (2016) · Zbl 1380.32025 · doi:10.4007/annals.2016.184.3.4
[11] Chen, J.: Multiple positive solutions of a class of non autonomous Schrödinger-Poisson systems. Nonlinear Anal., Real World Appl. 21, 13-26 (2015) · Zbl 1302.35160 · doi:10.1016/j.nonrwa.2014.06.002
[12] Ianni, I., Vaira, G.: Non-radial sign-changing solutions for the Schrödinger-Poisson problem in the semiclassical limit. NoDEA Nonlinear Differ. Equ. Appl. 22, 741-776 (2015) · Zbl 1327.35009 · doi:10.1007/s00030-014-0303-0
[13] Alves, C., Souto, M., Soares, S.: A sign-changing solution for the Schrödinger-Poisson equation in R \(3{\mathbb{R}}^3\). Rocky Mt. J. Math. 47, 1-25 (2017) · Zbl 1381.35021 · doi:10.1216/RMJ-2017-47-1-1
[14] Sun, J., Wu, T.: On the nonlinear Schrödinger-Poisson systems with sign-changing potential. Z. Angew. Math. Phys. 66, 1649-1669 (2015) · Zbl 1329.35292 · doi:10.1007/s00033-015-0494-1
[15] Figueiredo, G.: Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401, 706-713 (2013) · Zbl 1307.35110 · doi:10.1016/j.jmaa.2012.12.053
[16] Li, Y., Li, F., Shi, J.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285-2294 (2012) · Zbl 1259.35078 · doi:10.1016/j.jde.2012.05.017
[17] Naimen, D.: The critical problem of Kirchhoff type elliptic equations in dimension four. J. Differ. Equ. 257, 1168-1193 (2014) · Zbl 1301.35022 · doi:10.1016/j.jde.2014.05.002
[18] Naimen, D.: Positive solution of Kirchhoff type elliptic equations involving a critical Sobolev exponent. NoDEA Nonlinear Differ. Equ. Appl. 21, 885-914 (2014) · Zbl 1308.35097 · doi:10.1007/s00030-014-0271-4
[19] Sun, J., Tang, C.: Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Anal. 74, 1212-1222 (2011) · Zbl 1209.35033 · doi:10.1016/j.na.2010.09.061
[20] Wu, Y., Liu, S.: Existence and multiplicity of solutions for asymptotically linear Schrödinger-Kirchhoff equations. Nonlinear Anal., Real World Appl. 26, 191-198 (2015) · Zbl 1334.35060 · doi:10.1016/j.nonrwa.2015.05.010
[21] Zhang, D., Chai, G., Liu, W.: Existence and concentration of solutions for the nonlinear Kirchhoff type equations with steep well potential. Bound. Value Probl. 2017, 142 (2017) · Zbl 1379.35126 · doi:10.1186/s13661-017-0875-9
[22] Baraket, S., Molica Bisci, G.: Multiplicity results for elliptic Kirchhoff-type problems. Adv. Nonlinear Anal. 6(1), 85-93 (2017) · Zbl 1359.35026
[23] Xu, L., Chen, H.: Ground state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth. Adv. Nonlinear Anal. 7(4), 535-546 (2018) · Zbl 1404.35141 · doi:10.1515/anona-2016-0073
[24] Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN \(\mathbb{R}^N\). Proc. R. Soc. Edinb., Sect. A 129, 787-809 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[25] Molica Bisci, G., Rǎdulescu, V.D.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differ. Equ. 54(3), 2985-3008 (2015) · Zbl 1330.35495 · doi:10.1007/s00526-015-0891-5
[26] Xiang, M., Rǎdulescu, V.D., Zhang, B.: Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial Differ. Equ. 58(2), 57 (2019) · Zbl 1407.35216 · doi:10.1007/s00526-019-1499-y
[27] Molica Bisci, G., Radulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016) · Zbl 1356.49003 · doi:10.1017/CBO9781316282397
[28] Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256-1274 (2015) · Zbl 1319.35023 · doi:10.1016/j.jde.2015.02.040
[29] Tang, X., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384-2402 (2016) · Zbl 1343.35085 · doi:10.1016/j.jde.2016.04.032
[30] Zhang, Q.: Multiple positive solutions for Kirchhoff-Schrödinger-Poisson system with general singularity. Bound. Value Probl. 2017, 127 (2017) · Zbl 1379.35129 · doi:10.1186/s13661-017-0858-x
[31] Liu, F., Wang, S.: Positive solutions of Schrödinger-Kirchhoff-Poisson system without compact condition. Bound. Value Probl. 2017, 156 (2017) · Zbl 1382.35101 · doi:10.1186/s13661-017-0884-8
[32] Wang, L., Rǎdulescu, V.D., Zhang, B.: Infinitely many solutions for fractional Kirchhoff-Schrödinger-Poisson systems. J. Math. Phys. 60, 011506 (2019). https://doi.org/10.1063/1.5019677 · Zbl 1410.35208 · doi:10.1063/1.5019677
[33] Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996) · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.