×

Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in \({\mathbb{R}^{3}}\). (English) Zbl 1362.35142

Summary: This paper is dedicated to studying the following Schrödinger-Poisson system \[ \begin{cases} -\Delta u+V(x)u+\lambda\phi u=K(x)f(u),& x\in \mathbb{R}^{3},\\-\Delta\phi= u^2,\quad x\in \mathbb{R}^{3},\end{cases} \] where \(V,K\) are positive continuous potentials, \(f\) is a continuous function and \({\lambda}\) is a positive parameter. We develop a direct approach to establish the existence of one ground state sign-changing solution \({u_\lambda}\) with precisely two nodal domains, by introducing a weaker condition that there exists \({\theta_0\in (0,1)}\) such that \[ K(x)\left[\frac{f(\tau)}{\tau^3}-\frac{f(t\tau)}{(t\tau)^3} \right]\mathrm{sign}(1-t)+\theta_0V(x)\frac{|1-t^2|}{(t\tau)^2} \geq 0,\quad \forall x \in\mathbb{R}^3, t > 0, \tau\neq 0 \] than the usual increasing condition on \({f(t)/|t|^3}\). Under the above condition, we also prove that the energy of any sign-changing solution is strictly larger than two times the least energy, and give a convergence property of \({u_\lambda}\) as \({\lambda\searrow 0}\).

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI

References:

[1] Alves C.O., Souto M.A.S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J. Differ. Equ. 254(4), 1977-1991 (2013) · Zbl 1263.35076 · doi:10.1016/j.jde.2012.11.013
[2] Alves, C.O., Souto, M.A.S., Soares, S.M.: A sign-changing solution for the Schrödinger-Poisson equation (2014). arXiv:1408.3021 · Zbl 1364.35103
[3] Bartsch T., Liu Z., Weth T.: Sign changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 25-42 (2004) · Zbl 1140.35410 · doi:10.1081/PDE-120028842
[4] Bartsch T., Weth T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 259-281 (2005) · Zbl 1114.35068 · doi:10.1016/j.anihpc.2004.07.005
[5] Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283-293 (1998) · Zbl 0926.35125
[6] Benci V., Fortunato D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409-420 (2002) · Zbl 1037.35075 · doi:10.1142/S0129055X02001168
[7] Cerami G.: Un criterio di esistenza per i punti critici su varietà à illimitate. Rend. Accad. Sc. Lett. Inst. Lombardo 112, 332-336 (1978) · Zbl 0436.58006
[8] Cerami G., Vaira G.: Positive solutions for some nonautonomous Schrödinger-Poisson systems. J. Diff. Equ. 248, 521-543 (2010) · Zbl 1183.35109 · doi:10.1016/j.jde.2009.06.017
[9] Ding Y.H.: Variational Methods for Strongly Indefinite Problems. World Scientific, Singapore (2007) · Zbl 1133.49001 · doi:10.1142/6565
[10] Ding Y.H., Lee C.: Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J. Diff. Equ. 222, 137-163 (2006) · Zbl 1090.35077 · doi:10.1016/j.jde.2005.03.011
[11] Ding Y.H., Szulkin A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Diff. Equ. 29, 397-419 (2007) · Zbl 1119.35082 · doi:10.1007/s00526-006-0071-8
[12] D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 893-906 (2004) · Zbl 1064.35182 · doi:10.1017/S030821050000353X
[13] D’Aprile T., Mugnai D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307-322 (2004) · Zbl 1142.35406
[14] Guo Y.X., Tang Z.W.: Multi-bump solutions for Schrödinger equations involving critical growth and potential well. Discrete Contin. Dyn. Syst. 35, 3393-3415 (2015) · Zbl 1346.35071 · doi:10.3934/dcds.2015.35.3393
[15] He X.M., Zou W.M.: Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. J. Math. Phys. 53, 023702 (2012) · Zbl 1274.81078 · doi:10.1063/1.3683156
[16] Huang W.N., Tang X.H.: Semiclassical solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 415, 791-802 (2014) · Zbl 1311.35286 · doi:10.1016/j.jmaa.2014.02.015
[17] Huang W.N., Tang X.H.: Semiclassical solutions for the nonlinear Schrödinger-Maxwell equations with critical nonlinearity, Taiwan. J. Math. 18(4), 1203-1217 (2014) · Zbl 1357.35121
[18] Ianni I.: Sign-Changing radial solutions for the Schrödinger-Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 36-5385 (2013) · Zbl 1330.35128
[19] Li F.Y., Li Y.H., Shi J.P.: Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent. Commun. Contemp. Math. 16(06), 1450036 (2014) · Zbl 1309.35025 · doi:10.1142/S0219199714500369
[20] Li G.B., Peng S.J., Yan S.S.: Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Commun. Contemp. Math. 12(06), 1069-1092 (2010) · Zbl 1206.35082 · doi:10.1142/S0219199710004068
[21] Liang Z.P., Xu J., Zhu X.L.: Revisit to sign-changing solutions for the nonlinear Schrödinger-Poisson system in \[{\mathbb{R}^3}\] R3. J. Math. Anal. Appl. 435, 783-799 (2016) · Zbl 1336.35148 · doi:10.1016/j.jmaa.2015.10.076
[22] Lieb E.H.: Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities. Ann. Math. 118, 349-374 (1983) · Zbl 0527.42011 · doi:10.2307/2007032
[23] Lieb EH, Loss M: Analysis, Graduate Studies in Mathematics, vol. 14. AMS, Providence (1997)
[24] Liu H.L., Chen H.B.: Multiple solutions for a nonlinear Schrödinger-Poisson system with sign-changing potential. Comput. Math. Appl. 71(7), 1405-1416 (2016) · Zbl 1335.05132 · doi:10.1016/j.camwa.2016.02.010
[25] Mugnai D.: The Schrödinger-Poisson system with positive potential. Commun. Partial Differ. Equ. 36, 1099-1117 (2011) · Zbl 1234.35252 · doi:10.1080/03605302.2011.558551
[26] Noussair E.S., Wei J.: On the effect of the domain geometry on the existence and profile of nodal solution of some singularly perturbed semilinear Dirichlet problem. Indiana Univ. Math. J. 46, 1321-1332 (1997) · Zbl 0907.35011 · doi:10.1512/iumj.1997.46.1401
[27] Qin D.D., Tang X.H.: Asymptotically linear Schrödinger equation with zero on the boundary of the spectrum. Electron. J. Differ. Equ. 213, 1-15 (2015) · Zbl 1330.35104
[28] Qin D.D., Tang X.H.: New conditions on solutions for periodic Schrödinger equations with spectrum zero, Taiwan. J. Math. 19(4), 977-993 (2015) · Zbl 1357.35162
[29] Shuai W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256-1274 (2015) · Zbl 1319.35023 · doi:10.1016/j.jde.2015.02.040
[30] Shuai W., Wang Q.F.: Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in \[{\mathbb{R}^3}\] R3. Z. Angew. Math. Phys. 66, 3267-3282 (2015). doi:10.1007/s00033-015-0571-5 · Zbl 1332.35114 · doi:10.1007/s00033-015-0571-5
[31] Sun J.T., Chen H.B., Nieto J.J.: On ground state solutions for some non-autonomous Schröinger-Maxwell systems. J. Diff. Equ. 252, 3365-3380 (2012) · Zbl 1241.35057 · doi:10.1016/j.jde.2011.12.007
[32] Tang X.H.: Infinitely many solutions for semilinear Schrödinger equations with signchanging potential and nonlinearity. J. Math. Anal. Appl. 401, 407-415 (2013) · Zbl 1364.35103 · doi:10.1016/j.jmaa.2012.12.035
[33] Tang X.H.: New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation. Adv. Nonlinear Stud. 14, 349-361 (2014) · Zbl 1305.35036 · doi:10.1515/ans-2014-0208
[34] Tang X.H.: Ground state solutions for superlinear Schrödinger equation. Adv. Nonlinear Stud. 14, 361-373 (2014) · Zbl 1305.35036 · doi:10.1515/ans-2014-0208
[35] Tang X.H.: Non-Nehari manifold method for asymptotically linear Schrödinger equation. J. Aust. Math. Soc. 98, 104-116 (2015) · Zbl 1314.35030 · doi:10.1017/S144678871400041X
[36] Tang X.H.: Non-Nehari manifold method for asymptotically periodic Schrödinger equation. Sci. China Math. 58, 715-728 (2015) · Zbl 1321.35055 · doi:10.1007/s11425-014-4957-1
[37] Tang X.H., Cheng B.T.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Diff. Equ. 261(4), 2384-2402 (2016) · Zbl 1343.35085 · doi:10.1016/j.jde.2016.04.032
[38] Vaira G.: Ground states for Schrödinger-Poisson type systems. Ric. Mat. 60, 263-297 (2011) · Zbl 1261.35057 · doi:10.1007/s11587-011-0109-x
[39] Wang Z.P., Zhou H.S.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in \[{\mathbb{R}^3}\] R3. Calc. Var. Partial Diff. Equ. 52(3-4), 927-943 (2015) · Zbl 1311.35300 · doi:10.1007/s00526-014-0738-5
[40] Willem M: Minimax Theorems. Birkhäuser, Boston (1996) · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
[41] Zhao L.G., Zhao F.K.: Positive solutions for Schrödinger-Poisson equations with a critical exponent. Nonlinear Anal. 70, 2150-2164 (2009) · Zbl 1156.35374 · doi:10.1016/j.na.2008.02.116
[42] Zhong X., Zou W.M.: Ground state and multiple solutions via generalized Nehari manifold. Nonlinear Anal. 102, 251-263 (2014) · Zbl 1316.35106 · doi:10.1016/j.na.2014.02.018
[43] Zou W.M.: Sign-Changing Critical Point Theory. Springer, New York (2008) · Zbl 1159.49010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.