×

Semiclassical solutions for the nonlinear Schrödinger-Maxwell equations. (English) Zbl 1311.35286

Summary: In this paper, by using variational methods and critical point theory, we study the existence of semiclassical solutions for the following nonlinear Schrödinger-Maxwell equations \[ \begin{cases}-\varepsilon^2\Delta u+V(x)u+\phi u=f(x,u),\quad & \text{in }\mathbb R^3,\\-\Delta\phi=4\pi u^2,\quad &\text{in }\mathbb R^3,\end{cases} \] where \(\varepsilon>0\) and \(V(x)\geq 0\) for all \(x\in\mathbb R^3\). Under some weaker assumptions on \(V\) and \(f\), we prove that the system has at least one nontrivial solution for sufficient small \(\varepsilon>0\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q60 PDEs in connection with optics and electromagnetic theory
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
78A30 Electro- and magnetostatics
81V70 Many-body theory; quantum Hall effect
Full Text: DOI

References:

[1] Adams, R. A.; Fournier, J. F., Sobolev Spaces (2003), Academic Press: Academic Press New York · Zbl 1098.46001
[2] Kritály, A.; Repovš, D., On the Schrödinger-Maxwell system involving sublinear terms, Nonlinear Anal. Real World Appl., 13, 213-223 (2012) · Zbl 1239.35048
[3] Ambrosetti, A.; Ruiz, D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10, 391-404 (2008) · Zbl 1188.35171
[4] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[5] D’Aprile, T., Non-radially symmetric solution of the nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2, 177-192 (2002) · Zbl 1007.35090
[6] D’Aprile, T.; Mugnai, D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134, 893-906 (2004) · Zbl 1064.35182
[7] D’Aprile, T.; Mugnai, D., Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4, 307-322 (2004) · Zbl 1142.35406
[8] Azzollini, A.; Pomponio, A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, 90-108 (2008) · Zbl 1147.35091
[9] Azzollini, A.; d’Avenia, P., On a system involving a critically growing nonlinearity, J. Math. Anal. Appl., 387, 1, 433-438 (2012) · Zbl 1229.35060
[10] Bartsch, T.; Wang, Z.-Q.; Willem, M., The Dirichlet problem for superlinear elliptic equations, (Chipot, M.; Quittner, P., Handbook of Differential Equations—Stationary Partial Differential Equations, vol. 2 (2005), Elsevier), 1-5, (Chapter 1) · Zbl 1207.35001
[11] Benci, V.; Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11, 283-293 (1998) · Zbl 0926.35125
[12] Benci, V.; Fortunato, D., Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14, 409-420 (2002) · Zbl 1037.35075
[13] Berestycki, H.; Lions, P. L., Nonlinear scalar field equations, I - Existence of a ground state, Arch. Ration. Mech. Anal., 82, 4, 313-345 (1983) · Zbl 0533.35029
[14] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029
[15] Chen, P.; Tian, Cai, Infinitely many solutions for Schrödinger-Maxwell equations with indefinite sign subquadratic potentials, Appl. Math. Comput., 226, 492-502 (2014) · Zbl 1358.35027
[16] Chen, S.-J.; Tang, C.-L., High energy solutions for the superlinear Schrödinger-Maxwell equations, Nonlinear Anal., 71, 4927-4934 (2009) · Zbl 1175.35142
[17] Coclite, G. M., A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7, 417-423 (2003) · Zbl 1085.81510
[18] Coclite, G.; Georgiev, V., Solitary waves for Maxwell-Schrödinger equations, Electron. J. Differential Equations, 94, 1-31 (2004) · Zbl 1064.35180
[19] Evans, L. C., Partial Differential Equations (1998), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0902.35002
[20] Huang, W.-N.; Tang, X. H., The existence of infinitely many solutions for the nonlinear Schrödinger-Maxwell equations, Results Math., 65, 1-2, 223-234 (2014) · Zbl 1304.35644
[21] Jiang, Y.; Wang, Z.; Zhou, Huan-Song, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in \(R^3\), Nonlinear Anal., 83, 50-57 (2013) · Zbl 1288.35217
[22] Kikuchi, H., On the existence of solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., 27, 1445-1456 (2007) · Zbl 1119.35085
[23] Li, Q.; Su, Han; Wei, Zhongli, Existence of infinitely many large solutions for the nonlinear Schrödinger-Maxwell equations, Nonlinear Anal., 72, 4264-4270 (2010) · Zbl 1189.35081
[24] Lin, X.; Tang, X. H., Semiclassical solutions of perturbed \(p\)-Laplacian equations with critical nonlinearity, J. Math. Anal. Appl., 413, 438-449 (2014) · Zbl 1312.35070
[25] Pohožaev, S. I., On the eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\), Soviet Math. Dokl., 5, 1408-1411 (1965) · Zbl 0141.30202
[26] Pucci, P.; Serrin, J., A general variational identity, Indiana Univ. Math. J., 35, 3, 681-703 (1986) · Zbl 0625.35027
[27] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0609.58002
[28] Ruiz, D., Semiclassical states for coupled Schrödinger-Maxwell equations concentration around a sphere, Math. Models Methods Appl. Sci., 15, 141-164 (2005) · Zbl 1074.81023
[29] Ruiz, D., The Schrödinger-Possion equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 655-674 (2006) · Zbl 1136.35037
[30] Sirakov, B., Standing wave solutions of the nonlinear Schrödinger equations in \(R^N\), Ann. Mat. Pura Appl., 183, 73-83 (2002) · Zbl 1223.35291
[31] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2000), Springer: Springer Berlin · Zbl 0939.49001
[32] Sun, J., Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 390, 514-522 (2012) · Zbl 1236.35130
[33] Sun, J.; Chen, Haibo; Nieto, Juan J., On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252, 5, 3365-3380 (2012) · Zbl 1241.35057
[34] Willem, M., Minimax Theorems (1996), Birkhäuser: Birkhäuser Boston · Zbl 0856.49001
[35] Yang, M.; Shen, Zifei; Ding, Yanheng, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system, Nonlinear Anal., 71, 730-739 (2009) · Zbl 1171.35478
[36] Yang, M.; Zhao, Fukun; Ding, Yanheng, On the existence of solutions for Schrödinger-Maxwell systems in \(R^3\), Rocky Mountain J. Math., 42, 5, 1655-1674 (2012) · Zbl 1253.35166
[37] Yang, M.; Ding, Yanheng, Semiclassical solutions for nonlinear Schrödinger-Maxwell equations, Sci. Sin. Math., 40, 517-620 (2010)
[38] Yosida, K., Functional Analysis (1999), Springer-Verlag · Zbl 0217.16001
[39] Zou, W., Variant fountain theorems and their applications, Manuscripta Math., 104, 343-358 (2001) · Zbl 0976.35026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.