×

On the nonlinear Schrödinger-Poisson systems with sign-changing potential. (English) Zbl 1329.35292

Authors’ abstract: In this paper we study a nonlinear Schrödinger-Poisson system \[ \begin{cases}-\Delta u+V_{\lambda}(x)u+\mu K(x)\phi u=f(x,u)\;\text{ in } \mathbb{R}^3\\ -\Delta\phi=K(x)u^2\;\text{ in } \mathbb{R}^3\end{cases} \] where \(\mu >0\) is a parameter, \(V_{\lambda}\) is allowed to be sign-changing and \(f\) is an indefinite function. We require that \(V_\lambda:=\lambda V^+-V^-\) with \(V^+ \)having a bounded potential well \(\Omega\) whose depth is controlled by \(\lambda\) and \(V^-\geq 0\) for all \(x\in \mathbb{R}^3\). Under some suitable assumption on \(K\) and \(f\), the existence and the nonexistence of nontrivial solutions are obtained by using variational methods Furthermore, the phenomenon of concentration of solutions is explored as well.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J50 Variational methods for elliptic systems
Full Text: DOI

References:

[1] Alves C.O., Carrião P.C., Medeiros E.S.: Multiplicity of solutions for a class of quasilinear problem in exterior domains with Neumann conditions. Abstr. Appl. Anal. 3, 251-268 (2004) · Zbl 1133.35304 · doi:10.1155/S1085337504310018
[2] Ambrosetti A., Ruiz D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10(3), 39-404 (2008) · Zbl 1188.35171 · doi:10.1142/S021919970800282X
[3] Azzollini A.: Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity. J. Differ. Equ. 249, 1746-1763 (2010) · Zbl 1197.35096 · doi:10.1016/j.jde.2010.07.007
[4] Azzollini A., Pomponio A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90-108 (2008) · Zbl 1147.35091 · doi:10.1016/j.jmaa.2008.03.057
[5] Bartsch T., Pankov A., Wang Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549-569 (2001) · Zbl 1076.35037 · doi:10.1142/S0219199701000494
[6] Bartsch T., Tang Z.: Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete Contin. Dyn. Syst. 33, 7-26 (2013) · Zbl 1284.35390
[7] Bartsch T., Wang Z.-Q.: Existence and multiplicity results for superlinear elliptic problems on \[{\mathbb{R}^N}\] RN. Commun. Partial Differ. Equ. 20, 1725-1741 (1995) · Zbl 0837.35043 · doi:10.1080/03605309508821149
[8] Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283-293 (1998) · Zbl 0926.35125
[9] Brezis H., Lieb E.H.: A relation between pointwise convergence of functions and convergence functionals. Proc. Am. Math. Soc. 8, 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[10] Chen C.Y., Kuo Y.C., Wu T.F.: Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations. Proc. R. Soc. Edinb. Sect. A 143, 745-764 (2013) · Zbl 1302.35344 · doi:10.1017/S0308210511000692
[11] Cerami G., Vaira G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248, 521-543 (2010) · Zbl 1183.35109 · doi:10.1016/j.jde.2009.06.017
[12] D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb. Sect. 134A, 893-906 (2004) · Zbl 1064.35182 · doi:10.1017/S030821050000353X
[13] Ding Y.H., Szulkin A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397-419 (2007) · Zbl 1119.35082 · doi:10.1007/s00526-006-0071-8
[14] Ekeland I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990) · Zbl 0707.70003 · doi:10.1007/978-3-642-74331-3
[15] de Figueiredo D.G.: Positive Solutions of Semilinear Elliptic Problems, Lecture in Math. vol. 957. Springer, Berlin (1982) · Zbl 0506.35038
[16] Ianni I.: Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 365-385 (2013) · Zbl 1330.35128
[17] Ianni I., Ruiz D.: Ground and bound states for a static Schrödinger-Poisson-Slater problem. Commun. Contemp. Math. 14, 1250003 (2012) · Zbl 1237.35146 · doi:10.1142/S0219199712500034
[18] Ianni I., Vaira G.: On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573-595 (2008) · Zbl 1216.35138
[19] Jiang Y., Zhou H.: Schrödinger-Poisson system with steep potential well. J. Differ. Equ. 251, 582-608 (2011) · Zbl 1233.35086 · doi:10.1016/j.jde.2011.05.006
[20] Kikuchi H.: Existence and stability of standing waves for Schrödinger-Poisson-Slatere equation. Adv. Nonlinear Stud. 7, 403-437 (2007) · Zbl 1133.35013
[21] Kikuchi H.: On the existence of solutions for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Anal. 67, 1445-1456 (2007) · Zbl 1119.35085 · doi:10.1016/j.na.2006.07.029
[22] Lions P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. H. Poincare Anal. NonLineaire 1, 109-145 (1984) · Zbl 0541.49009
[23] Ruiz D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655-674 (2006) · Zbl 1136.35037 · doi:10.1016/j.jfa.2006.04.005
[24] Ruiz D.: On the Schrödinger-Poisson-Slater System: behavior of minimizers, radial and nonradial cases. Arch. Ratl. Mech. Anal. 198, 349-368 (2010) · Zbl 1235.35232 · doi:10.1007/s00205-010-0299-5
[25] Sato Y., Tanaka K.: Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc. 361, 6205-6253 (2009) · Zbl 1198.35261 · doi:10.1090/S0002-9947-09-04565-6
[26] Sun J.: Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 390, 514-522 (2012) · Zbl 1236.35130 · doi:10.1016/j.jmaa.2012.01.057
[27] Sun J., Chen H., Nieto J.J.: On ground state solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 252, 3365-3380 (2012) · Zbl 1241.35057 · doi:10.1016/j.jde.2011.12.007
[28] Sun J., Wu T.F.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ. Equ. 256, 1771-1792 (2014) · Zbl 1288.35219 · doi:10.1016/j.jde.2013.12.006
[29] Ye, Y., Tang, C.: Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential. Calc. Var. Partial Differ. Equ. doi:10.1007/s00526-014-0753-6 · Zbl 1322.35023
[30] Wang Z., Zhou H.: Positive solution for a nonlinear stationary Schrödinger-Poisson system in \[{\mathbb{R}^3}\] R3. Discrete Contin. Dyn. Syst. 18, 809-816 (2007) · Zbl 1189.35350 · doi:10.3934/dcds.2007.18.121
[31] Wang Z., Zhou H.: Positive solutions for nonlinear Schrödinger equations with deepening potential well. J. Eur. Math. Soc. 11, 545-573 (2009) · Zbl 1172.35073 · doi:10.4171/JEMS/160
[32] Zhao L., Liu H., Zhao F.: Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J. Differ. Equ. 255, 1-23 (2013) · Zbl 1286.35103 · doi:10.1016/j.jde.2013.03.005
[33] Zhao L., Zhao F.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346, 155-169 (2008) · Zbl 1159.35017 · doi:10.1016/j.jmaa.2008.04.053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.