×

Low density phases in a uniformly charged liquid. (English) Zbl 1346.49017

Summary: This paper is concerned with the macroscopic behavior of global energy minimizers in the three-dimensional sharp interface unscreened Ohta-Kawasaki model of diblock copolymer melts. This model is also referred to as the nuclear liquid drop model in the studies of the structure of highly compressed nuclear matter found in the crust of neutron stars, and, more broadly, is a paradigm for energy-driven pattern forming systems in which spatial order arises as a result of the competition of short-range attractive and long-range repulsive forces. Here we investigate the large volume behavior of minimizers in the low volume fraction regime, in which one expects the formation of a periodic lattice of small droplets of the minority phase in a sea of the majority phase. Under periodic boundary conditions, we prove that the considered energy \(\Gamma\)-converges to an energy functional of the limit “homogenized” measure associated with the minority phase consisting of a local linear term and a non-local quadratic term mediated by the Coulomb kernel. As a consequence, asymptotically the mass of the minority phase in a minimizer spreads uniformly across the domain. Similarly, the energy spreads uniformly across the domain as well, with the limit energy density minimizing the energy of a single droplet per unit volume. Finally, we prove that in the macroscopic limit the connected components of the minimizers have volumes and diameters that are bounded above and below by universal constants, and that most of them converge to the minimizers of the energy divided by the volume for the whole space problem.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49Q20 Variational problems in a geometric measure-theoretic setting
82D60 Statistical mechanics of polymers

References:

[1] Abrikosov A.A.: Some properties of strongly compressed matter. I. Sov. Phys. JETP 12, 1254-1259 (1961)
[2] Acerbi E., Fusco N., Morini M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322, 515-557 (2013) · Zbl 1270.49043 · doi:10.1007/s00220-013-1733-y
[3] Alberti G., Choksi R., Otto F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Am. Math. Soc. 22, 569-605 (2009) · Zbl 1206.49046 · doi:10.1090/S0894-0347-08-00622-X
[4] Baym G., Bethe H.A., Pethick C.J.: Neutron star matter. Nucl. Phys. A 175, 225-271 (1971) · doi:10.1016/0375-9474(71)90281-8
[5] Bohr N.: Neutron capture and nuclear constitution. Nature 137, 344-348 (1936) · Zbl 0013.23702 · doi:10.1038/137344a0
[6] Bohr N., Wheeler J.A.: The mechanism of nuclear fission. Phys. Rev. 56, 426-450 (1939) · JFM 65.1535.05 · doi:10.1103/PhysRev.56.426
[7] Bonacini M., Cristoferi R.: Local and global minimality results for a nonlocal isoperimetric problem on \[{\mathbb{R}^N}\] RN. SIAM J. Math. Anal. 46, 2310-2349 (2014) · Zbl 1301.49114 · doi:10.1137/130929898
[8] Brezis H., Browder F.: A property of Sobolev spaces. Commun. Partial Differ. Equ. 4, 1077-1083 (1979) · Zbl 0423.46023 · doi:10.1080/03605307908820120
[9] Chen X., Oshita Y.: An application of the modular function in nonlocal variational problems. Arch. Ration. Mech. Anal. 186, 109-132 (2007) · Zbl 1147.74024 · doi:10.1007/s00205-007-0050-z
[10] Choksi R.: Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci. 11, 223-236 (2001) · Zbl 1023.82015 · doi:10.1007/s00332-001-0456-y
[11] Choksi R.: On global minimizers for a variational problem with long-range interactions. Q. Appl. Math. 70, 517-537 (2012) · Zbl 1246.49042 · doi:10.1090/S0033-569X-2012-01316-9
[12] Choksi R., Peletier M.A.: Small volume fraction limit of the diblock copolymer problem: I. Sharp interface functional. SIAM J. Math. Anal. 42, 1334-1370 (2010) · Zbl 1210.49050 · doi:10.1137/090764888
[13] Choksi R., Peletier M.A.: Small volume fraction limit of the diblock copolymer problem: II. Diffuse interface functional. SIAM J. Math. Anal. 43, 739-763 (2011) · Zbl 1223.49056 · doi:10.1137/10079330X
[14] Choksi R., Ren X.: On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Stat. Phys. 113, 151-176 (2003) · Zbl 1034.82037 · doi:10.1023/A:1025722804873
[15] Choksi R., Sternberg P.: On the first and second variations of a nonlocal isoperimetric problem. J. Reine Angew. Math. 611, 75-108 (2007) · Zbl 1132.35029
[16] Cicalese M., Spadaro E.: Droplet minimizers of an isoperimetric problem with long-range interactions. Commun. Pure Appl. Math. 66, 1298-1333 (2013) · Zbl 1269.49085 · doi:10.1002/cpa.21463
[17] Cohen S., Plasil F., Swiatecki W.J.: Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II. Ann. Phys. 82, 557-596 (1974) · doi:10.1016/0003-4916(74)90126-2
[18] Cohen S., Swiatecki W.J.: The deformation energy of a charged drop: IV. Evidence for a discontinuity in the conventional family of saddle point shapes. Ann. Phys. 19, 67-164 (1962) · Zbl 0111.45801 · doi:10.1016/0003-4916(62)90234-8
[19] Cook N.D.: Models of the Atomic Nucleus. Springer, Berlin (2006)
[20] Dobrynin A.V., Rubinstein M.: Theory of polyelectrolytes in solutions and at surfaces. Progr. Polym. Sci. 30, 1049-1118 (2005) · doi:10.1016/j.progpolymsci.2005.07.006
[21] Evans L.C., Gariepy R.L.: Measure Theory and Fine Properties of Functions. CRC, Boca Raton (1992) · Zbl 0804.28001
[22] Feenberg E.: On the shape and stability of heavy nuclei. Phys. Rev. 55, 504-505 (1939) · Zbl 0021.08901 · doi:10.1103/PhysRev.55.504.2
[23] Figalli A., Fusco N., Maggi F., Millot V., Morini M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441-507 (2015) · Zbl 1312.49051 · doi:10.1007/s00220-014-2244-1
[24] Foldy L.L.: Phase transition in a Wigner lattice. Phys. Rev. B 3, 3472-3479 (1971) · doi:10.1103/PhysRevB.3.3472
[25] Förster S., Abetz V., Müller A.H.E.: Polyelectrolyte block copolymer micelles. Adv. Polym. Sci. 166, 173-210 (2004) · doi:10.1007/b11351
[26] Frank R.L., Lieb E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47, 4436-4450 (2015) · Zbl 1332.49042 · doi:10.1137/15M1010658
[27] Frenkel J.: On the splitting of heavy nuclei by slow neutrons. Phys. Rev. 55, 987 (1939) · Zbl 0021.28101 · doi:10.1103/PhysRev.55.987
[28] Fuchs K.: A quantum mechanical investigation of the cohesive forces of metallic copper. Proc. R. Soc. Lond. A 151, 585-602 (1935) · Zbl 0013.33301 · doi:10.1098/rspa.1935.0167
[29] Fusco N., Maggi F., Pratelli A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941-980 (2008) · Zbl 1187.52009 · doi:10.4007/annals.2008.168.941
[30] Gamow G.: Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. A 126, 632-644 (1930) · JFM 56.0762.02 · doi:10.1098/rspa.1930.0032
[31] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983) · Zbl 0562.35001 · doi:10.1007/978-3-642-61798-0
[32] Goldman D., Muratov C.B., Serfaty S.: The \[{\Gamma }\] Γ-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density. Arch. Ration. Mech. Anal. 210, 581-613 (2013) · Zbl 1296.82018 · doi:10.1007/s00205-013-0657-1
[33] Goldman D., Muratov C.B., Serfaty S.: The \[{\Gamma }\] Γ-limit of the two-dimensional Ohta-Kawasaki energy. Droplet arrangement via the renormalized energy. Arch. Ration. Mech. Anal. 212, 445-501 (2014) · Zbl 1305.35134 · doi:10.1007/s00205-013-0711-z
[34] Goldman M., Novaga M.: Volume-constrained minimizers for the prescribed curvature problem in periodic media. Calc. Var. PDE 44, 297-318 (2012) · Zbl 1241.49027 · doi:10.1007/s00526-011-0435-6
[35] Hashimoto M., Seki H., Yamada M.: Shape of nuclei in the crust of neutron star. Prog. Theor. Phys. 71, 320-326 (1984) · doi:10.1143/PTP.71.320
[36] Julin V.: Isoperimetric problem with a Coulombic repulsive term. Indiana Univ. Math. J. 63, 77-89 (2014) · Zbl 1311.49110 · doi:10.1512/iumj.2014.63.5185
[37] Julin, V., Pisante, G.: Minimality via second variation for microphase separation of diblock copolymer melts. J. Reine Angew. Math. (2015) (published online) · Zbl 1372.49022
[38] Kirzhnits D.A.: Internal structure of super-dense stars. Sov. Phys. JETP 11, 365-368 (1960)
[39] Knüpfer H., Muratov C.B.: On an isoperimetric problem with a competing non-local term. I. The planar case. Commun. Pure Appl. Math. 66, 1129-1162 (2013) · Zbl 1269.49087 · doi:10.1002/cpa.21451
[40] Knüpfer H., Muratov C.B.: On an isoperimetric problem with a competing non-local term. II. The general case. Commun. Pure Appl. Math. 67, 1974-1994 (2014) · Zbl 1302.49064 · doi:10.1002/cpa.21479
[41] Koester D., Chanmugam G.: Physics of white dwarf stars. Rep. Prog. Phys. 53, 837-915 (1990) · doi:10.1088/0034-4885/53/7/001
[42] Landkof N.S.: Foundations of Modern Potential Theory. Springer, New York (1972) · Zbl 0253.31001 · doi:10.1007/978-3-642-65183-0
[43] Lattimer J.M., Pethick C.J., Ravenhall D.G., Lamb D.Q.: Physical properties of hot, dense matter: the general case. Nucl. Phys. A 432, 646-742 (1985) · doi:10.1016/0375-9474(85)90006-5
[44] Lorenz C.P., Ravenhall D.G., Pethick C.J.: Neutron star crusts. Phys. Rev. Lett. 70, 379-382 (1993) · doi:10.1103/PhysRevLett.70.379
[45] Lu J., Otto F.: Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Commun. Pure Appl. Math. 67, 1605-1617 (2014) · Zbl 1301.49002 · doi:10.1002/cpa.21477
[46] Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012) · Zbl 1255.49074
[47] Meitner L., Frisch O.R.: Disintegration of uranium by neutrons: a new type of nuclear reaction. Nature 143, 239-240 (1939) · Zbl 0021.09004 · doi:10.1038/143239a0
[48] Muratov, C.B.: Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys. Rev. E 66, 066108 (2002) · Zbl 1269.49085
[49] Muratov C.B.: Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299, 45-87 (2010) · Zbl 1205.82107 · doi:10.1007/s00220-010-1094-8
[50] Muratov C.B., Zaleski A.: On an isoperimetric problem with a competing non-local term: quantitative results. Ann. Glob. Anal. Geom. 47, 63-80 (2015) · Zbl 1312.49053 · doi:10.1007/s10455-014-9435-z
[51] Myers W.D., Swiatecki W.J.: Nuclear masses and deformations. Nucl. Phys. 81, 1-60 (1966) · doi:10.1016/S0029-5582(66)80001-9
[52] Myers W.D., Swiatecki W.J.: Nuclear properties according to the Thomas-Fermi model. Nucl. Phys. A 601, 141-167 (1996) · doi:10.1016/0375-9474(95)00509-9
[53] Nagai T., Fukuyama H.: Ground state of a Wigner crystal in a magnetic field. II. Hexagonal close-packed structure. J. Phys. Soc. Jpn. 52, 44-53 (1983) · doi:10.1143/JPSJ.52.44
[54] Ohta T., Kawasaki K.: Equilibrium morphologies of block copolymer melts. Macromolecules 19, 2621-2632 (1986) · doi:10.1021/ma00164a028
[55] Okamoto M., Maruyama T., Yabana K., Tatsumi T.: Nuclear “pasta” structures in low-density nuclear matter and properties of the neutron-star crust. Phys. Rev. C 88, 025801 (2013) · doi:10.1103/PhysRevC.88.025801
[56] Oyamatsu K., Hashimoto M., Yamada M.: Further study of the nuclear shape in high-density matter. Prog. Theor. Phys. 72, 373-375 (1984) · doi:10.1143/PTP.72.373
[57] Pelekasis N.A., Tsamopoulos J.A., Manolis G.D.: Equilibrium shapes and stability of charged and conducting drops. Phys. Fluids A: Fluid Dyn. 2, 1328-1340 (1990) · Zbl 0712.76095 · doi:10.1063/1.857583
[58] Pethick C.J., Ravenhall D.G.: Matter at large neutron excess and the physics of neutron-star crusts. Ann. Rev. Nucl. Part. Sci. 45, 429-484 (1995) · doi:10.1146/annurev.ns.45.120195.002241
[59] Ravenhall D.G., Pethick C.J., Wilson J.R.: Structure of matter below nuclear saturation density. Phys. Rev. Lett. 50, 2066-2069 (1983) · doi:10.1103/PhysRevLett.50.2066
[60] Ren X.F., Wei J.C.: On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal. 31, 909-924 (2000) · Zbl 0973.49007 · doi:10.1137/S0036141098348176
[61] Rigot S.: Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme. Mémoires de la SMF, 2 série 82, 1-104 (2000) · Zbl 0983.49025
[62] Rougerie N., Serfaty S.: Higher dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69, 0519-0605 (2016) · Zbl 1338.82043 · doi:10.1002/cpa.21570
[63] Salpeter E.E.: Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669-682 (1961) · doi:10.1086/147194
[64] Sandier E., Serfaty S.: From the Ginzburg-Landau model to vortex lattice problems. Commun. Math. Phys. 313, 635-743 (2012) · Zbl 1252.35034 · doi:10.1007/s00220-012-1508-x
[65] Schneider A., Horowitz C., Hughto J., Berry D.: Nuclear “pasta” formation. Phys. Rev. C 88, 065807 (2013) · doi:10.1103/PhysRevC.88.065807
[66] Sternberg P., Topaloglu I.: On the global minimizers of the nonlocal isoperimetric problem in two dimensions. Interfaces Free Bound. 13, 155-169 (2010) · Zbl 1216.35019
[67] Tinkham M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1996)
[68] von Weizsäcker C.F.: Zur Theorie der Kernmassen. Zeitschrift für Physik A 96, 431-458 (1935) · Zbl 0012.23501 · doi:10.1007/BF01337700
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.