×

Quantum jumps, superpositions, and the continuous evolution of quantum states. (English) Zbl 1357.81009

Summary: The apparent dichotomy between quantum jumps on the one hand, and continuous time evolution according to wave equations on the other hand, provided a challenge to Bohr’s proposal of quantum jumps in atoms. Furthermore, Schrödinger’s time-dependent equation also seemed to require a modification of the explanation for the origin of line spectra due to the apparent possibility of superpositions of energy eigenstates for different energy levels. Indeed, Schrödinger himself proposed a quantum beat mechanism for the generation of discrete line spectra from superpositions of eigenstates with different energies. However, these issues between old quantum theory and Schrödinger’s wave mechanics were correctly resolved only after the development and full implementation of photon quantization. The second quantized scattering matrix formalism reconciles quantum jumps with continuous time evolution through the identification of quantum jumps with transitions between different sectors of Fock space. The continuous evolution of quantum states is then recognized as a sum over continually evolving jump amplitudes between different sectors in Fock space. In today’s terminology, this suggests that linear combinations of scattering matrix elements are epistemic sums over ontic states. Insights from the resolution of the dichotomy between quantum jumps and continuous time evolution therefore hold important lessons for modern research both on interpretations of quantum mechanics and on the foundations of quantum computing. They demonstrate that discussions of interpretations of quantum theory necessarily need to take into account field quantization. They also demonstrate the limitations of the role of wave equations in quantum theory, and caution us that superpositions of quantum states for the formation of qubits may be more limited than usually expected.

MSC:

81P05 General and philosophical questions in quantum theory
00A79 Physics

References:

[1] Ahmad, Q. R., Physical Review Letters, 89, 011301 (2002)
[2] Bacciagaluppi, G.; Crull, E., Studies in History and Philosophy of Modern Physics, 40, 374 (2009) · Zbl 1228.81006
[4] Bailey, Q. G.; Kostelecky, V. A.; Xui, R., Physical Review D, 91, 022006 (2015)
[5] Ballentine, L. E., Reviews of Modern Physics, 42, 358 (1970) · Zbl 0203.27801
[6] Ballentine, L. E., Quantum mechanics: a modern development (1998), World Scientific: World Scientific Singapore · Zbl 0997.81501
[7] Barrett, J.; Cavalcanti, E. G.; Lal, R.; Maroney, O. J.E., Physical Review Letters, 112, 250403 (2014)
[8] Born, M., Atomic physics (1937), Blackie&Son: Blackie&Son London
[9] Branciard, C., Physical Review Letters, 113, 020409 (2014)
[10] Caves, C. M.; Fuchs, C. A.; Schack, R., Physical Review A, 65, 022305 (2002)
[11] Colladay, D.; Kostelecky, V. A., Physical Review D, 58, 116002 (1998)
[12] Corkum, P. B.; Krausz, F., Nature Physics, \(3, 381 (2007)\)
[13] Courant, R.; Hilbert, D., Methods of mathematical physics, Vol. I (1953), Interscience: Interscience New York · Zbl 0729.00007
[14] Courant, R.; John, F., Introduction to calculus and analysis, Vol. II (1989), Springer: Springer New York · Zbl 0683.26002
[15] Dick, R., Advanced quantum mechanics: materials and photons (2016), Springer: Springer New York · Zbl 1375.81005
[16] Dirac, P. A.M., Proceedings of the Royal Society of London A, 112, 661 (1926) · JFM 52.0975.01
[17] Dirac, P. A.M., Proceedings of the Royal Society of London A, 114, 243 (1927) · Zbl 0001.31201
[18] Dirac, P. A.M., The principles of quantum mechanics (1958), Oxford University Press: Oxford University Press Oxford · Zbl 0080.22005
[19] Dyson, F. J., Physical Review, 75, 1736 (1949) · Zbl 0033.14201
[20] Earman, J., Erkenntnis, 69, 377 (2008) · Zbl 1163.81301
[21] Eckle, P.; Pfeiffer, A. N.; Cirelli, C.; Staudte, A.; Dörner, R.; Muller, H. G.; Büttiker, M.; Keller, U., Science, 322, 1525 (2008)
[22] Ester, P.; Lackmann, L.; Michaelis de Vasconcellos, S.; Hübner, M. C.; Zrenner, A.; Bichler, M., Applied Physics Letters, 91, 111110 (2007)
[23] Ferrero, M., Foundations of Physics, 33, 665 (2003)
[24] Ferrero, M.; Salgado, D.; Sánchez-Gómez, J. L., Foundations of Physics, 34, 1993 (2004)
[25] Fraser, D., Studies in History and Philosophy of Modern Physics, 39, 841 (2008) · Zbl 1223.81027
[26] Fuchs, C. A.; Mermin, N. D.; Schack, R., American Journal of Physics, 82, 749 (2014)
[28] Fukuda, Y., Physical Review Letters, 81, 1562 (1998)
[29] Gallmann, L.; Herrmann, J.; Locher, R.; Sabbar, M.; Ludwig, A.; Lucchini, M.; Keller, U., Molecular Physics, 111, 2243 (2013)
[30] Glauber, R. J., Physical Review, 131, 2766 (1963) · Zbl 1371.81166
[31] Goulielmakis, E.; Loh, Z.-H.; Wirth, A.; Santra, R.; Rohringer, N.; Yakovlev, V. S.; Zherebtsov, S.; Pfeifer, T.; Azzeer, A. M.; Kling, M. F.; Leone, S. R.; Krausz, F., Nature, 466, 739 (2010)
[32] Haag, R., Matematisk-fysiske Meddelelser, 29, 12 (1955)
[33] Haag, R., Local quantum physics: fields, particles, algebras (1992), Springer: Springer Berlin · Zbl 0777.46037
[34] Hardy, L., International Journal of Modern Physics B, 27, 1345012 (2013) · Zbl 1279.81008
[35] Hassan, M. Th.; Luu, T. T.; Moulet, A.; Raskazovskaya, O.; Zhokhov, P.; Garg, M.; Karpowicz, N.; Zheltikov, A. M.; Pervak, V.; Krausz, F.; Goulielmakis, E., Nature, 530, 66 (2016)
[36] Heitler, W., The quantum theory of radiation (1954), Oxford University Press: Oxford University Press Oxford · Zbl 0055.21603
[37] Holland, P. R., The quantum theory of motion (1993), Cambridge University Press: Cambridge University Press Cambridge
[38] Lavoie, J.; Donohue, J. M.; Wright, L. G.; Fedrizzi, A.; Resch, K. J., Nature Photonics, \(7, 363 (2013)\)
[39] Leifer, M. S., Physical Review Letters, 112, 160404 (2014)
[40] Lvovsky, A. I.; Hansen, H.; Aichele, T.; Benson, O.; Mlynek, J.; Schiller, S., Physical Review Letters, 87, 050402 (2001)
[41] Marchildon, L., Quantum mechanics: from basic principles to numerical methods and applications (2002), Springer: Springer New York · Zbl 1033.81005
[42] Marchildon, L., Foundations of Physics, 45, 754 (2015) · Zbl 1327.81017
[43] Merzbacher, E., Quantum mechanics (1998), Wiley: Wiley New York
[44] Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W. V.; Petroff, P. M.; Zhang, L.; Hu, E.; Imamoglu, A., Science, 290, 2282 (2000)
[45] Myrvold, W. C., Synthese, 192, 3247 (2015) · Zbl 1359.81026
[46] Niikura, H.; Wörner, H. J.; Villeneuve, D. M.; Corkum, P. B., Physical Review Letters, 107, 093004 (2011)
[47] Perovic, S., Studies in History and Philosophy of Modern Physics, 37, 275 (2006) · Zbl 1223.81042
[48] Pusey, M. F.; Barrett, J.; Rudolph, T., Nature Physics, \(8, 475 (2012)\)
[49] Ringbauer, M.; Duffus, B.; Branciard, C.; Cavalcanti, E. G.; White, A. G.; Fedrizzi, A., Nature Physics, 11, 249 (2015)
[50] Ruetsche, L., Interpreting quantum theories (2011), Oxford University Press: Oxford University Press Oxford · Zbl 1269.81003
[51] Schrödinger, E., Annalen der Physik, 386, 109 (1926)
[52] Schrödinger, E., The British Journal for the Philosophy of Science, \(3, 233 (1952)\)
[53] Schrödinger, E., The British Journal for the Philosophy of Science, \(3, 109 (1952)\)
[54] Spekkens, R. W., Physical Review A, 75, 032110 (2007)
[55] Uiberacker, M.; Uphues, Th.; Schultze, M.; Verhoef, A. J.; Yakovlev, V.; Kling, M. F.; Rauschenberger, J.; Kabachnik, N. M.; Schröder, H.; Lezius, M.; Kompa, K. L.; Muller, H.-G.; Vrakking, M. J.J.; Hendel, S.; Kleineberg, U.; Heinzmann, U.; Drescher, M.; Krausz, F., Nature, 446, 627 (2007)
[57] Wildmann, J. S.; Trotta, R.; Martín-Sánchez, J.; Zallo, E.; O’Steen, M.; Schmidt, O. G.; Rastelli, A., Physical Review B, 92, 235306 (2015)
[58] Zinkernagel, H., Studies in History and Philosophy of Modern Physics, 53, 9 (2016) · Zbl 1331.81044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.