×

What is a wavefunction? (English) Zbl 1359.81026

Summary: Much of the the discussion of the metaphysics of quantum mechanics focusses on the status of wavefunctions. This paper is about how to think about wavefunctions, when we bear in mind that quantum mechanics – that is, the nonrelativistic quantum theory of systems of a fixed, finite number of degrees of freedom – is not a fundamental theory, but arises, in a certain approximation, valid in a limited regime, from a relativistic quantum field theory. We will explicitly show how the wavefunctions of quantum mechanics, and the configuration spaces on which they are defined, are constructed from a relativistic quantum field theory. Two lessons will be drawn from this. The first is that configuration spaces are not fundamental, but rather are derivative of structures defined on ordinary spacetime. The second is that wavefunctions are not as much like classical fields as might first appear, in that, on the most natural way of constructing wavefunctions from quantum field-theoretic quantities, the value assigned to a point in configuration space is not a local fact about that point, but rather, depends on the global state.

MSC:

81P05 General and philosophical questions in quantum theory
00A79 Physics
Full Text: DOI

References:

[1] Albert, DZ; Cushing, JT (ed.); Fine, A. (ed.); Goldstein, S. (ed.), Elementary quantum metaphysics, 277-284 (1996), Dordrecht · doi:10.1007/978-94-015-8715-0_19
[2] Albert, D. Z. (2013). Wave function realism. See Ney and Albert, 2013, 52-57.
[3] Bell, J. S. (1987). Are there quantum jumps? In C. Kilmister (Ed.), Schrödinger: Centenary celebration of a polymath (pp. 41-52). Cambridge: Cambridge University Press. Reprinted in Speakable and unspeakable in quantum mechanics (Cambridge University Press, 1987), pp. 201-212. · Zbl 1239.81001
[4] Busch, P. A. (1999). Unsharp localization and causality in relativistic quantum theory. Journal of Physics A, 32, 6535-6546. · Zbl 1024.81028 · doi:10.1088/0305-4470/32/37/305
[5] Corichi, A., Cortez, J., & Quevedoa, H. (2004). Schrödinger and Fock representation for a field theory on curved spacetime. Annals of Physics, 313, 446-478. · Zbl 1074.81054 · doi:10.1016/j.aop.2004.05.004
[6] Fleming, G.; Butterfield, J.; Butterfield, J. (ed.); Pagonis, C. (ed.), Strange positions, 108-165 (2000), Cambridge
[7] Fraser, D. (2008). The fate of ‘particles’ in quantum field theories with interactions. Studies in History and Philosophy of Modern Physics, 39, 841-859. · Zbl 1223.81027 · doi:10.1016/j.shpsb.2008.05.003
[8] Greiner, W., & Reinhardt, J. (1996). Field quantization. Berlin: Springer. · Zbl 0844.00006 · doi:10.1007/978-3-642-61485-9
[9] Haag, R. (1996). Local quantum physics: Fields, particles, algebras (2nd ed.). Berlin: Springer. · Zbl 0857.46057 · doi:10.1007/978-3-642-61458-3
[10] Halvorson, H. (2001). Reeh-Schlieder defeats Newton-Wigner: On alternative localization schemes in relativistic quantum field theory. Philosophy of Science, 68, 111-133. · doi:10.1086/392869
[11] Halvorson, H., & Clifton, R. (2002). No place for particles in relativistic quantum theories? Philosophy of Science, 69, 1-28. · doi:10.1086/338939
[12] Jackiw, R. (1990). Analysis on infinite-dimensional manifolds—-Schrödinger representation for quantized fields. In O. J. P. Éboli, M. Gomes, & A. Santoro (Eds.), Field Theory and particle physics (pp. 78-143). Singapore: World Scientific.
[13] Lewis, P. J. (2004). Life in configuration space. The British Journal for the Philosophy of Science, 55, 713-729. · Zbl 1073.62041 · doi:10.1093/bjps/55.4.713
[14] Loewer, B. (1996). Humean supervenience. Philosophical Topics, 24, 101-127. · doi:10.5840/philtopics199624112
[15] Malament, DB; Clifton, R. (ed.), In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles, 1-10 (1996), Dordrecht · doi:10.1007/978-94-015-8656-6_1
[16] Maudlin, T.; Saunders, S. (ed.); Barrett, J. (ed.); Kent, A. (ed.); Wallace, D. (ed.), Can the world be only wavefunction?, 121-143 (2010), Oxford · doi:10.1093/acprof:oso/9780199560561.003.0005
[17] Myrvold, W. C. (2003). Relativistic quantum becoming. The British Journal for the Philosophy of Science, 53, 475-500. · Zbl 1049.81006 · doi:10.1093/bjps/54.3.475
[18] Myrvold, W. C. (2011). Nonseparability, classical and quantum. The British Journal for the Philosophy of Science, 62, 417-432. · Zbl 1266.81017 · doi:10.1093/bjps/axq036
[19] Ney, A. (2012). The status of our ordinary three dimensions in a quantum universe. Noûs, 46, 525-560. · Zbl 1366.81032 · doi:10.1111/j.1468-0068.2010.00797.x
[20] Ney, A. (2013a). Introduction. See Ney and Albert, 2013a, 1-51. · Zbl 1074.81054
[21] Ney, A. (2013b). Ontological reduction and the wave function ontology. See Ney and Albert, 2013b, 168-183.
[22] Ney, A., & Albert, D. Z. (Eds.). (2013). The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford: Oxford University Press. · Zbl 1275.81007
[23] Norsen, T. (2005). Einstein’s boxes. American Journal of Physics, 73, 164-176. · doi:10.1119/1.1811620
[24] North, J. (2013). The structure of a quantum world. See Ney and Albert, 2013, 184-202.
[25] Norton, J. D. (2011). Little boxes: A simple implementation of the Greenberger, Horne, and Zeilinger result for spatial degrees of freedom. American Journal of Physics, 79, 182-188. · doi:10.1119/1.3531943
[26] Ryder, L. H. (1996). Quantum field theory (2nd ed.). Cambridge: Cambridge University Press. · Zbl 0893.00008 · doi:10.1017/CBO9780511813900
[27] Streater, R. F., & Wightman, A. S. (2000). PCT, spin and statistics, and all that. Princeton: Princeton University Press. · Zbl 1026.81027
[28] Wald, R. M. (1994). Quantum field theory in curved spacetime and black hole thermodynamics. Chicago: University of Chicago Press. · Zbl 0842.53052
[29] Wallace, D., & Timpson, C. G. (2010). Quantum mechanics on spacetime I: Spacetime state realism. The British Journal for the Philosophy of Science, 61, 697-727. · Zbl 1219.81033 · doi:10.1093/bjps/axq010
[30] Weinberg, S. (1995). The quantum theory of fields (Vol. I). Cambridge: Cambridge University Press. · Zbl 0959.81002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.