×

Superselection rules for philosophers. (English) Zbl 1163.81301

Summary: The overaraching goal of this paper is to elucidate the nature of superselection rules in a manner that is accessible to philosophers of science and that brings out the connections between superselection and some of the most fundamental interpretational issues in quantum physics. The formalism of von Neumann algebras is used to characterize three different senses of superselection rules (dubbed, weak, strong, and very strong) and to provide useful necessary and sufficient conditions for each sense. It is then shown how the Haag-Kastler algebraic approach to quantum physics holds the promise of a uniform and comprehensive account of the origin of superselection rules. Some of the challenges that must be met before this promise can be kept are discussed. The focus then turns to the role of superselection rules in solutions to the measurement problem and the emergence of classical properties. It is claimed that the role for “hard” superselection rules is limited, but “soft” (a.k.a. environmental) superselection rules or N. P. Landsman’s situational superselection rules may have a major role to play. Finally, an assessment is given of the recently revived attempts to deconstruct superselection rules.

MSC:

81P05 General and philosophical questions in quantum theory
81T05 Axiomatic quantum field theory; operator algebras
Full Text: DOI

References:

[1] Aharonov, Y., & Susskind, L. (1967a). Charge superselection rule. Physical Review, 155, 1428–1431. · doi:10.1103/PhysRev.155.1428
[2] Aharonov, Y., & Susskind, L. (1967b). Observability of the sign change of spinors under 2{\(\pi\)} rotations. Physical Review, 158, 1237–1238. · doi:10.1103/PhysRev.158.1237
[3] Araki, H. (1999). Mathematical theory of quantum fields. Oxford: Oxford University Press. · Zbl 0998.81501
[4] Baez, J. C., Segal, I. E., & Zhou, Z. (1992). Introduction to algebraic and constructive quantum field theory. Princeton, NJ: Princeton University Press. · Zbl 0760.46061
[5] Bargmann, V. (1964). Note on Wigner’s theorem on symmetry operations. Journal of Mathematical Physics, 5, 862–868. · Zbl 0141.23205 · doi:10.1063/1.1704188
[6] Bartlett, S. D., Rudolf, T., & Spekkens, R. W. (2006). Dialogue concerning two views on quantum coherence: Fascist and fictionalist. International Journal of Quantum Information, 4, 17–43. · Zbl 1093.81003 · doi:10.1142/S0219749906001591
[7] Bartlett, S. D., Rudolf, T., & Spekkens, R. W. (2007). Reference frames, superselection rules, and quantum information. Reviews of Modern Physics, 79, 555–609. · Zbl 1205.81042 · doi:10.1103/RevModPhys.79.555
[8] Bartlett, S. D., & Wiseman, H. M. (2003). Entanglement constrained by superselection rules. Physical Review Letters, 91, 097903-1-4.
[9] Beltrametti, E. G., & Cassinelli, G. (1981). The logic of quantum mechanics. Reading, MA: W. A. Benjamin. · Zbl 0491.03023
[10] Bogolubov, N. N., Logunov, A. A., & Todorov, I. T. (1975). Introduction to axiomatic quantum field theory. Reading, MA: W. A. Benjamin.
[11] Bohm, D. (1951). Quantum theory. Englewood-Cliffs, NJ: Prentice-Hall. · Zbl 0048.21802
[12] Bratelli, O., & Robinson, D. W. (1987). Operator algebras and quantum statistical mechanics 1 (2nd ed.). New York: Springer.
[13] Bub, J. (1988). How to solve the measurement problem in quantum mechanics. Foundations of Physics, 18, 701–722. · doi:10.1007/BF00734151
[14] Bub, J. (1997). Interpreting the quantum world. Cambridge: Cambridge University Press. · Zbl 0993.81002
[15] Cisneros, R. P., Martínez-y-Romero, Núñez-Yépez, H. N., & Salas-Brito, A. L. (1998). Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics. European Journal of Physics, 19, 237–243. · Zbl 1032.81530
[16] Colin, S., Durt, T., & Tumulka, R. (2006). On superselection rules in Bohm-Bell theories. Journal of Physics A, 39, 15403–15419. · Zbl 1106.81006 · doi:10.1088/0305-4470/39/50/008
[17] d’Espagnat, B. (1976). Conceptual foundations of quantum mechanics (2nd ed.). Reading, MA: W. A. Benjamin.
[18] Divakaran, P. P. (1994). Symmetries and quantization: Structure of the state space. Reviews in Mathematical Physics, 6, 167–205. · Zbl 0811.22009 · doi:10.1142/S0129055X94000109
[19] Doplicher, S., Haag, R., & Roberts, J. E. (1971). Local observables and particle statistics. I. Communications in Mathematical Physics, 23, 199–230. · doi:10.1007/BF01877742
[20] Doplicher, S., Haag, R., & Roberts, J. E. (1974). Local observables and particle statistics. I. Communications in Mathematical Physics, 35, 49–85. · doi:10.1007/BF01646454
[21] Earman, J., & Ruetsche, L. (2007). Probabilities in quantum field theory and quantum statistical mechanics. pre-print.
[22] Emch, G. (1972). Algebraic methods in statistical mechanics and quantum field theory. New York: Wiley. · Zbl 0235.46085
[23] Emch, G., & Piron, C. (1963). Symmetry in quantum theory. Journal of Mathematical Physics, 4, 469–473. · Zbl 0113.21105 · doi:10.1063/1.1703978
[24] Galindo, A., Morales, A., & Nuñez-Logos, R. (1962). Superselection principle and pure states of n identical particles. Journal of Mathematical Physics, 3, 324–328. · Zbl 0113.45304 · doi:10.1063/1.1703808
[25] Giulini, D. (1996). Galilei invariance in quantum mechanics. Annals of Physics, 249, 222–235. · Zbl 0873.46041 · doi:10.1006/aphy.1996.0069
[26] Giulini, D. (2003). Superselection rules and symmetries. In E. Joos et al. (Eds.), Decoherence and the appearance of a classical world in quantum theory (2nd ed., pp. 259–315). Berlin: Springer.
[27] Giulini, D., Kiefer, C., & Zeh, D. H. (1995). Symmetries, superselection rules, and decoherence. Physics Letters A, 199, 291–298. · Zbl 1020.81507 · doi:10.1016/0375-9601(95)00128-P
[28] Haag, R., & Kastler, J. (1964). An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5, 848–861. · Zbl 0139.46003 · doi:10.1063/1.1704187
[29] Halvorson, H. (2007). Algebraic quantum field theory. In J. Butterfield & J. Earman (Eds.), Handbook of the philosophy of science. Philosophy of physics (pp.731–922). Amsterdam: Elsevier/North Holland.
[30] Hamhalter, J. (2003). Quantum measure theory. Dordecht: Kluwer Academic. · Zbl 1038.81003
[31] Hartle, J. B., & Taylor, J. R. (1969). Quantum mechanics of paraparticles. Physical Review, 178, 2043–2051. · doi:10.1103/PhysRev.178.2043
[32] Hegerfeldt, G. C., & Kraus, K. (1968). Critical remark on the observability of the sign change of spinors under 2{\(\pi\)} rotations. Physical Review, 170, 1185–1186. · doi:10.1103/PhysRev.170.1185
[33] Hegerfeldt, G. C., Kraus, K., & Wigner, E. P. (1968). Proof of the Fermion superselection rule without the assumption of time-reversal invariance. Journal of Mathematical Physics, 9, 2029–2031. · Zbl 0172.27304 · doi:10.1063/1.1664539
[34] Henneaux, M., & Teitelboim, C. (1992). Quantization of gauge theories. Princeton: Princeton University Press. · Zbl 0838.53053
[35] Hepp, K. (1972). Quantum theory of measurement and macroscopic observables. Helvetica Physica Acta, 45, 237–248.
[36] Horuzhy, S. S. (1975). Superposition principle in algebraic quantum field theory. Theoretical and Mathematical Physics, 23, 413–421. · Zbl 0411.46048 · doi:10.1007/BF01036150
[37] Hughes, R. I. G. (1989). The structure and interpretation of quantum mechanics. Cambridge, MA: Harvard University Press.
[38] Jauch, J. M. (1960). Systems of observables in quantum mechanics. Helvetica Physica Acta, 33, 711–726. · Zbl 0119.43603
[39] Jauch, J. M., & Misra, B. (1961). Supersymmetries and essential observables. Helvetica Physica Acta, 34, 699–709. · Zbl 0115.44001
[40] Kadison, R. V., & Ringrose, J. R. (1991). Fundamentals of the theory of operator algebras, Vols. I and II. Providence, RI: American Mathematical Society. · Zbl 0869.46028
[41] Kaempffer, F. A. (1965). Concepts in quantum mechanics. New York: Academic Press. · Zbl 0127.18602
[42] Kastler, D. (Ed.) (1990). The algebraic theory of superselection sectors: Introduction and recent results. In Proceedings of the Convegno Internationale Algebraic Theory of Superselection Sectors and Field Theory. Singapore: World Scientific.
[43] Klein, A. G., & Opat, I. (1976). Observation of 2{\(\pi\)} rotations by Fresnel diffraction of neutrons. Physical Review Letters, 37, 238–240. · doi:10.1103/PhysRevLett.37.238
[44] Landsman, N. P. (1991). Algebraic theory of superselection sectors and the measurement problem in quantum mechanics. International Journal of Theoretical Physics A, 30, 5349–5371. · Zbl 0809.46089
[45] Landsman, N. P. (1995). Observation and superselection in quantum mechanics. Studies in History and Philosophy of Modern Physics, 26, 45–73. · Zbl 1222.81114 · doi:10.1016/1355-2198(95)00001-A
[46] Landsman, N. P. (2007). Between classical and quantum. In J. Butterfield & J. Earman (Eds.), Handbook of the philosophy of science. Philosophy of physics (pp. 417–553). Amsterdam: Elsevier/North-Holland.
[47] Lubkin, E. (1970). On violation of the superselection rules. Annals of Physics, 56, 69–80. · Zbl 0184.54103 · doi:10.1016/0003-4916(70)90005-9
[48] Mackey, G. W. (1998). The relationship between classical mechanics and quantum mechanics. In L. A. Coburn & M. A. Rieffel (Eds.), Perspectives on quantization (pp. 91–109). Providence, RI: American Mathematical Society. · Zbl 0955.70012
[49] Messiah, A. (1962). Quantum mechanics (Vol. 2). New York: Wiley. · Zbl 0102.42602
[50] Mirman, R. (1969). Coherent superposition of charge states. Physical Review, 186, 1380–1383. · doi:10.1103/PhysRev.186.1380
[51] Mirman, R. (1970). Analysis of the experimental meaning of coherent superposition and the nonexistence of superselection rules. Physical Review D, 1, 3349–3363. · doi:10.1103/PhysRevD.1.3349
[52] Mirman, R. (1979). Nonexistence of superselection rules: Definition of the term frame of reference. Foundations of Physics, 9, 283–299. · doi:10.1007/BF00715184
[53] Orear, J., Rosenfeld, A. H., & Schulter, R. A. (Eds.) (1951). Nuclear physics and the physics of fundamental particles; Proceedings. Chicago: Institute for Nuclear Studies.
[54] Piron, C. (1969). Les régles de superséletion continues. Helvetica Physica Acta, 42, 330–338. · Zbl 0181.27502
[55] Piron, C. (1976). Foundations of quantum physics. Reading, MA: W. A. Benjamin. · Zbl 0333.46050
[56] Reed, M., & Simon, B. (1975). Methods of mathematical physics (Vol. 2). New York: Academic Press. · Zbl 0308.47002
[57] Reed, M., & Simon, B. (1980). Methods of mathematical physics (Vol. 1). New York: Academic Press (revised edition). · Zbl 0459.46001
[58] Roberts, J. E., & Roepstorff, G. (1969). Some basic concepts of algebraic quantum theory. Communications in Mathematical Physics, 11, 321–338. · Zbl 0167.55806 · doi:10.1007/BF01645853
[59] Robinson, D. (1990). The infinite apparatus in the quantum theory of measurement. In A. Fine, M. Forbes & L. Wessels (Eds.), PSA 1990 (Vol. 1, pp. 251–261). East Lansing, MI: Philosophy of Science Association.
[60] Robinson, D. (1994). Can superselection rules solve the measurement problem? British Journal for the Philosophy of Science, 45, 79–93. · doi:10.1093/bjps/45.1.79
[61] Rolnick, W. B. (1967). Does charge obey a superselection rule? Physical Review Letters, 19, 717–718.
[62] Roman, P. (1965). Advanced quantum theory. Reading, MA: Addison-Wesley. · Zbl 0127.18603
[63] Sewell, G. L. (2002). Quantum mechanics and its emergent macrophysics. Princeton, NJ: Princeton University Press. · Zbl 1007.82001
[64] Streater, R. F., & Wightman, A. S. (1964). PCT, spin and statistics, and all that. New York: W. A. Benjamin. · Zbl 0135.44305
[65] Strocchi, F., & Wightman, A. S. (1974). Proof of the charge superselection rule in local relativistic quantum field theory. Journal of Mathematical Physics, 15, 2198–2224. · doi:10.1063/1.1666601
[66] Thalos, M. (1998). The trouble with superselection accounts of measurement. Philosophy of Science, 65, 518–544. · doi:10.1086/392659
[67] van Fraassen, B. C. (1991). Quantum mechanics: An empiricist approach. Oxford: Clarendon Press.
[68] Vermaas, P. E. (1999). A philosopher’s understanding of quantum mechanics: Possibilities and impossibilities of a modal interpretation. Cambridge: Cambridge University Press. · Zbl 0960.81001
[69] Verstraete, F., & Cirac, J. I. (2003). Quantum nonlocality in the presence of superselection rules and data hiding protocols. Physical Review Letters, 91, 010404–14. · doi:10.1103/PhysRevLett.91.010404
[70] von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer. · JFM 58.0929.06
[71] Wald, R. M. (1994). Quantum field theory in curved spacetime and black hole thermodynamics. Chicago: University of Chicago Press. · Zbl 0842.53052
[72] Wan, K.-K. (1980). Superselection rules, quantum measurement, and Schrödinger’s cat. Canadian Journal of Physics, 58, 976–982. · Zbl 1043.81510
[73] Weingard, R., & Smith, G. (1982). Spin and space. Synthese, 50, 313–331. · doi:10.1007/BF00416902
[74] Werner, S. A., Colella, R., Overhauser, A. W., & Eagen, C. F. (1975). Observation of the phase shift of a neutron due to precession in a magnetic field. Physical Review Letters, 35, 1050–1055. · doi:10.1103/PhysRevLett.35.1053
[75] Wick, G. C., Wightman, A. S., & Wigner, E. P. (1952). The intrinsic parity of elementary particles. Physical Review, 88, 101–105. · Zbl 0046.43906 · doi:10.1103/PhysRev.88.101
[76] Wick, G. C., Wightman, A. S., & Wigner, E. P. (1970). Superselection rule for charge. Physical Review D, 1, 3267–3269. · doi:10.1103/PhysRevD.1.3267
[77] Wightman, A. S. (1959). Relativistic invariance and quantum mechanics. Nuovo Cimento, 14(supplemento), 81–94. · Zbl 0090.19605
[78] Wightman, A. S. (1995). Superselection rules; Old and new. Nuovo Cimento B, 110(N. 5-6), 751–769. · doi:10.1007/BF02741478
[79] Wightman, A. S., & Glance, N. (1989). Superselection rules in molecules. Nuclear Physics B (Proc. Suppl.), 6, 202–206. · Zbl 0959.81517 · doi:10.1016/0920-5632(89)90439-8
[80] Wigner, E. P. (1931). Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Braunsweig: Friedrich Vieweg. · JFM 57.1578.03
[81] Wigner, E. P. (1973). Epistemological perspective on quantum theory. In C. A. Hooker (Ed.), Contemporary research in the foundations and philosophy of quantum theory (pp. 369–385). Dordrecht: D. Reidel.
[82] Zurek, W. H. (1982). Environment induced superselection rules. Physical Review D, 26, 1862–1880. · doi:10.1103/PhysRevD.26.1862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.