×

Dialogue concerning two views on quantum coherence: factist and fictionist. (English) Zbl 1093.81003

Summary: A controversy that has arisen many times over in disparate contexts is whether quantum coherences between eigenstates of certain quantities are fact or fiction. We present a pedagogical introduction to the debate in the form of a hypothetical dialogue between proponents from each of the two camps: a factist and a fictionist. A resolution of the debate can be achieved, we argue, by recognizing that quantum states do not only contain information about the intrinsic properties of a system but about its extrinsic properties as well, that is, about its relation to other systems external to it. Specifically, the coherent quantum state of the factist is the appropriate description of the relation of the system to one reference frame, while the incoherent quantum state of the fictionist is the appropriate description of the relation of the system to another, uncorrelated, reference frame. The two views, we conclude, are alternative but equally valid paradigms of description.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] DOI: 10.1103/PhysRev.155.1428 · doi:10.1103/PhysRev.155.1428
[2] P. W. Anderson, The Lesson of Quantum Theory, eds. J. D. Boer, E. Dal and O. Ulfbeck (Elsevier, Amsterdam, 1986) p. 2333.
[3] Haag R., Il Nuovo Cimento pp 2695–
[4] DOI: 10.1103/PhysRevLett.33.918 · doi:10.1103/PhysRevLett.33.918
[5] DOI: 10.1103/PhysRevLett.76.161 · doi:10.1103/PhysRevLett.76.161
[6] DOI: 10.1103/PhysRevA.53.4254 · doi:10.1103/PhysRevA.53.4254
[7] DOI: 10.1080/09500349708231845 · Zbl 1044.82512 · doi:10.1080/09500349708231845
[8] DOI: 10.1103/PhysRevA.55.4330 · doi:10.1103/PhysRevA.55.4330
[9] DOI: 10.1126/science.275.5300.637 · doi:10.1126/science.275.5300.637
[10] DOI: 10.1103/PhysRevLett.73.2279 · doi:10.1103/PhysRevLett.73.2279
[11] DOI: 10.1103/PhysRevLett.75.2064 · doi:10.1103/PhysRevLett.75.2064
[12] DOI: 10.1103/PhysRevLett.75.2065 · doi:10.1103/PhysRevLett.75.2065
[13] DOI: 10.1103/PhysRevA.55.3195 · doi:10.1103/PhysRevA.55.3195
[14] DOI: 10.1080/095003497152915 · doi:10.1080/095003497152915
[15] DOI: 10.1103/PhysRevA.58.4244 · doi:10.1103/PhysRevA.58.4244
[16] DOI: 10.1103/PhysRevA.58.4247 · doi:10.1103/PhysRevA.58.4247
[17] DOI: 10.1103/PhysRevLett.87.077903 · doi:10.1103/PhysRevLett.87.077903
[18] DOI: 10.1103/PhysRevLett.88.027902 · doi:10.1103/PhysRevLett.88.027902
[19] van Enk S. J., Quant. Inf. Comput. 2 pp 151–
[20] DOI: 10.1103/PhysRevA.68.042326 · doi:10.1103/PhysRevA.68.042326
[21] DOI: 10.1016/j.physleta.2004.10.061 · Zbl 1123.81467 · doi:10.1016/j.physleta.2004.10.061
[22] DOI: 10.1103/PhysRevA.68.042329 · doi:10.1103/PhysRevA.68.042329
[23] Wiseman H. M., J. Mod. Opt. 50 pp 1797–
[24] DOI: 10.1088/1464-4266/6/8/035 · doi:10.1088/1464-4266/6/8/035
[25] DOI: 10.1103/PhysRevA.68.050302 · doi:10.1103/PhysRevA.68.050302
[26] DOI: 10.1007/978-1-4419-8907-9_121 · doi:10.1007/978-1-4419-8907-9_121
[27] DOI: 10.1017/S0305004100013554 · JFM 61.1561.03 · doi:10.1017/S0305004100013554
[28] DOI: 10.1017/S0305004100019137 · JFM 62.1613.03 · doi:10.1017/S0305004100019137
[29] DOI: 10.1016/0375-9601(93)90880-9 · doi:10.1016/0375-9601(93)90880-9
[30] d’Espagnat B., Conceptual Foundations of Quantum Mechanics (1976)
[31] DOI: 10.1103/PhysRevA.2.1170 · doi:10.1103/PhysRevA.2.1170
[32] Graham R., Prog. Optics pp 233–
[33] Leonhardt U., Cambridge Studies in Modern Optics, in: Measuring the Quantum State of Light (1997)
[34] DOI: 10.1007/978-3-642-79504-6 · doi:10.1007/978-3-642-79504-6
[35] DOI: 10.1016/0375-9601(67)90259-9 · doi:10.1016/0375-9601(67)90259-9
[36] DOI: 10.1103/PhysRev.159.1084 · doi:10.1103/PhysRev.159.1084
[37] DOI: 10.1364/JOSA.58.000946 · doi:10.1364/JOSA.58.000946
[38] DOI: 10.1103/PhysRevA.71.042107 · doi:10.1103/PhysRevA.71.042107
[39] DOI: 10.1103/PhysRevA.47.4227 · doi:10.1103/PhysRevA.47.4227
[40] Jackson J. D., Classical Electrodynamics (1998) · Zbl 0114.42903
[41] DOI: 10.1007/BF00354100 · doi:10.1007/BF00354100
[42] DOI: 10.1103/PhysRevLett.91.027901 · doi:10.1103/PhysRevLett.91.027901
[43] DOI: 10.1103/PhysRevA.71.032339 · doi:10.1103/PhysRevA.71.032339
[44] DOI: 10.1103/PhysRevLett.84.2525 · Zbl 0956.81008 · doi:10.1103/PhysRevLett.84.2525
[45] DOI: 10.1103/PhysRevA.70.032307 · doi:10.1103/PhysRevA.70.032307
[46] DOI: 10.1103/PhysRevA.70.032321 · doi:10.1103/PhysRevA.70.032321
[47] DOI: 10.1142/S0219749906001657 · Zbl 1099.81019 · doi:10.1142/S0219749906001657
[48] Nielsen M. A., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
[49] DOI: 10.1088/0305-4470/37/29/010 · Zbl 1062.81012 · doi:10.1088/0305-4470/37/29/010
[50] DOI: 10.1103/PhysRev.88.101 · Zbl 0046.43906 · doi:10.1103/PhysRev.88.101
[51] DOI: 10.1142/S0219749906001669 · Zbl 1090.81008 · doi:10.1142/S0219749906001669
[52] DOI: 10.1103/PhysRevD.27.2885 · doi:10.1103/PhysRevD.27.2885
[53] DOI: 10.1103/PhysRevA.69.052326 · doi:10.1103/PhysRevA.69.052326
[54] DOI: 10.1103/PhysRevA.73.022311 · doi:10.1103/PhysRevA.73.022311
[55] DOI: 10.1080/09500340308234548 · doi:10.1080/09500340308234548
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.