×

Multiple normalized solutions for fractional elliptic problems. (English) Zbl 07920507

Summary: In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional \(p\)-Laplace problem: \[ \begin{cases} (-\Delta)_p^s v + \mathcal{V}(\xi x) |v|^{p-2}v =\lambda|v|^{p-2}v+f(v)\quad \text{in } \mathbb{R}^N, \\ \qquad\qquad\qquad \displaystyle\int\limits_{\mathbb{R}^N} |v|^p \, dx =a^p, \end{cases} \] where \(a, \xi>0\), \(p \geq 2\), \(\lambda \in \mathbb{R}\) is an unknown parameter that appears as a Lagrange multiplier, \(\mathcal{V}: \mathbb{R}^N \to [0, \infty)\) is a continuous function, and \(f\) is a continuous function with \(L^p\)-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik-Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of \(\mathcal{V}\), as \(\xi\) is small enough via Ekeland’s variational principle.

MSC:

35A15 Variational methods applied to PDEs
35J10 Schrödinger operator, Schrödinger equation
35B09 Positive solutions to PDEs
35B33 Critical exponents in context of PDEs
Full Text: DOI

References:

[1] F. J. Almgren, Jr. and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), no. 4, 683-773. · Zbl 0688.46014
[2] C. O. Alves, V. Ambrosio and T. Isernia, Existence, multiplicity and concentration for a class of fractional p&q Laplacian problems in \mathbb{R}^N, Commun. Pure Appl. Anal. 10 (2019), 2009-2045. · Zbl 1412.35364
[3] C. O. Alves, On existence of multiple normalized solutions to a class of elliptic problems in whole \mathbb{R}^N, Z. Angew. Math. Phys. 73 (2022), no. 3, Paper No. 97. · Zbl 1490.35176
[4] C. O. Alves and C. Ji, Normalized solutions for the Schrödinger equations with L^2-subcritical growth and different types of potentials, J. Geom. Anal. 32 (2022), no. 5, Paper No. 165. · Zbl 1490.35388
[5] C. O. Alves, C. Ji and O. H. Miyagaki, Multiplicity of normalized solutions for a Schrödinger equation with critical growth in \mathbb{R}^N, preprint (2021), https://arxiv.org/abs/2103.07940v2.
[6] C. O. Alves, C. Ji and O. H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in \mathbb{R}^N, Calc. Var. Partial Differential Equations 61 (2022), no. 1, Paper No. 18. · Zbl 1481.35141
[7] C. O. Alves and N. V. Thin, On existence of multiple normalized solutions to a class of elliptic problems in whole \mathbb{R}^N via Lusternik-Schnirelmann category, SIAM J. Math. Anal. 55 (2023), no. 2, 1264-1283. · Zbl 1514.35218
[8] V. Ambrosio and T. Isernia, Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian, Discrete Contin. Dyn. Syst. 38 (2018), no. 11, 5835-5881. · Zbl 06951275
[9] T. Bartsch and N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Paper No. 22. · Zbl 1409.35076
[10] S. Chen, V. D. Rădulescu and X. Tang, Normalized solutions of nonautonomous Kirchhoff equations: Sub- and super-critical cases, Appl. Math. Optim. 84 (2021), no. 1, 773-806. · Zbl 1473.35149
[11] S. Cingolani and L. Jeanjean, Stationary waves with prescribed L^2-norm for the planar Schrödinger-Poisson system, SIAM J. Math. Anal. 51 (2019), no. 4, 3533-3568. · Zbl 1479.35331
[12] S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal. 10 (1997), no. 1, 1-13. · Zbl 0903.35018
[13] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. · Zbl 0286.49015
[14] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Math. 107, Cambridge University, Cambridge, 1993. · Zbl 0790.58002
[15] X. He, V. D. Rădulescu and W. Zou, Normalized ground states for the critical fractional Choquard equation with a local perturbation, J. Geom. Anal. 32 (2022), no. 10, Paper No. 252. · Zbl 1495.35191
[16] A. Iannizzotto, S. Mosconi and M. Squassina, Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam. 32 (2016), no. 4, 1353-1392. · Zbl 1433.35447
[17] N. Ikoma and K. Tanaka, A note on deformation argument for L^2 normalized solutions of nonlinear Schrödinger equations and systems, Adv. Differential Equations 24 (2019), no. 11-12, 609-646. · Zbl 1437.35188
[18] L. Jeanjean and T. T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation, J. Differential Equations 303 (2021), 277-325. · Zbl 1475.35163
[19] L. Jeanjean and T. T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann. 384 (2022), no. 1-2, 101-134. · Zbl 1497.35433
[20] L. Jeanjean and S.-S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity 32 (2019), no. 12, 4942-4966. · Zbl 1429.35101
[21] L. Jeanjean and S.-S. Lu, On global minimizers for a mass constrained problem, Calc. Var. Partial Differential Equations 61 (2022), no. 6, Paper No. 214. · Zbl 1500.35155
[22] Q. Li, V. D. Rădulescu, J. Zhang and X. Zhao, Normalized solutions of the autonomous Kirchhoff equation with Sobolev critical exponent: Sub- and super-critical cases, Proc. Amer. Math. Soc. 151 (2023), no. 2, 663-678. · Zbl 1506.35052
[23] Q. Li and W. Zou, The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L^2-subcritical and L^2-supercritical cases, Adv. Nonlinear Anal. 11 (2022), no. 1, 1531-1551. · Zbl 1498.35197
[24] H. Luo and Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differential Equations 59 (2020), no. 4, Paper No. 143. · Zbl 1445.35307
[25] G. Molica Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia Math. Appl. 162, Cambridge University, Cambridge, 2016. · Zbl 1356.49003
[26] H.-M. Nguyen and M. Squassina, Fractional Caffarelli-Kohn-Nirenberg inequalities, J. Funct. Anal. 274 (2018), no. 9, 2661-2672. · Zbl 1393.46027
[27] S. Peng and A. Xia, Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential, Commun. Pure Appl. Anal. 20 (2021), no. 11, 3723-3744. · Zbl 1480.35131
[28] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations 269 (2020), no. 9, 6941-6987. · Zbl 1440.35312
[29] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal. 279 (2020), no. 6, Article ID 108610. · Zbl 1440.35311
[30] C. Wang and J. Sun, Normalized solutions for the p-Laplacian equation with a trapping potential, Adv. Nonlinear Anal. 12 (2023), no. 1, Paper No. 20220291. · Zbl 1512.35208
[31] W. Wang, Q. Li, J. Zhou and Y. Li, Normalized solutions for p-Laplacian equations with a L^2-supercritical growth, Ann. Funct. Anal. 12 (2021), no. 1, Paper No. 9. · Zbl 1455.35126
[32] Y. B. Wang, X. Y. Zeng and H. S. Zhou, Asymptotic behavior of least energy solutions for a fractional Laplacian eigenvalue problem on \mathbb{R}^N, Acta Math. Sin. (Engl. Ser.) 39 (2023), no. 4, 707-727. · Zbl 1518.35347
[33] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl. 24, Birkhäuser, Boston, 1996. · Zbl 0856.49001
[34] S. Yao, H. Chen, V. D. Rădulescu and J. Sun, Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation, SIAM J. Math. Anal. 54 (2022), no. 3, 3696-3723. · Zbl 1497.35145
[35] S. Yu, C. Tang and Z. Zhang, Normalized solutions of mass subcritical fractional Schrödinger equations in exterior domains, J. Geom. Anal. 33 (2023), no. 5, Paper No. 162. · Zbl 1510.35390
[36] P. Zhang and Z. Han, Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity, Z. Angew. Math. Phys. 73 (2022), no. 4, Paper No. 149. · Zbl 1497.35132
[37] Z. Zhang and Z. Zhang, Normalized solutions to p-Laplacian equations with combined nonlinearities, Nonlinearity 35 (2022), no. 11, 5621-5663. · Zbl 1500.35192
[38] M. Zhen and B. Zhang, Normalized ground states for the critical fractional NLS equation with a perturbation, Rev. Mat. Complut. 35 (2022), no. 1, 89-132. · Zbl 1481.35140
[39] J. Zuo, C. Liu and C. Vetro, Normalized solutions to the fractional Schrödinger equation with potential, Mediterr. J. Math. 20 (2023), no. 4, Paper No. 216. · Zbl 1517.35252
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.